Advertisement
Review article| Volume 324, ISSUE 1-2, P1-9, January 15, 2013

Clinical experience with stem cells and other cell therapies in neurological diseases

  • Dimitrios Karussis
    Correspondence
    Corresponding author at: Multiple Sclerosis Center at Hadassah, Department of Neurology, Hadassah University Hospital, Ein-Kerem, Israel. Tel.: +972 2 6776939; fax: +972 2 6437783.
    Affiliations
    Department of Neurology, MS Center and Laboratory of Neuroimmunology, Agnes-Ginges Center for Neurogenetics, Hadassah University Hospital, Ein Kerem, Jerusalem, Israel
    Search for articles by this author
  • Panayiota Petrou
    Affiliations
    Department of Neurology, MS Center and Laboratory of Neuroimmunology, Agnes-Ginges Center for Neurogenetics, Hadassah University Hospital, Ein Kerem, Jerusalem, Israel
    Search for articles by this author
  • Ibrahim Kassis
    Affiliations
    Department of Neurology, MS Center and Laboratory of Neuroimmunology, Agnes-Ginges Center for Neurogenetics, Hadassah University Hospital, Ein Kerem, Jerusalem, Israel
    Search for articles by this author
Published:October 29, 2012DOI:https://doi.org/10.1016/j.jns.2012.09.031

      Abstract

      To overcome the limited capacity of the CNS for regeneration, the theoretical alternative would be to use stem cells for more effective management of chronic degenerative and inflammatory neurological conditions, and also of acute neuronal damage from injuries or cerebrovascular diseases. Although the adult brain contains small numbers of stem cells in restricted areas, this intrinsic stem cell repertoire is small and does not measurably contribute to functional recovery. Embryonic cells carrying pluripotent and self-renewal properties represent the stem cell prototype, but there are additional somatic stem cells that may be harvested and expanded from various tissues during adult life. Stem cell transplantation is based on the assumption that such cells may have the potential to regenerate or support the survival of the existing, partially damaged cells. This review summarizes the state-of-the-art and the clinical worldwide experience with the use of various types of stem cells in neurological diseases.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Buhnemann C.
        • Scholz A.
        • Bernreuther C.
        • Malik C.Y.
        • Braun H.
        • Schachner M.
        • et al.
        Neuronal differentiation of transplanted embryonic stem cell-derived precursors in stroke lesions of adult rats.
        Brain. 2006; 129: 3238-3248
        • Fan Y.
        • Shen F.
        • Frenzel T.
        • Zhu W.
        • Ye J.
        • Liu J.
        • et al.
        Endothelial progenitor cell transplantation improves long-term stroke outcome in mice.
        Ann Neurol. 2010; 67: 488-497
        • Kassis I.
        • Grigoriadis N.
        • Gowda-Kurkalli B.
        • Mizrachi-Kol R.
        • Ben-Hur T.
        • Slavin S.
        • et al.
        Neuroprotection and immunomodulation with mesenchymal stem cells in chronic experimental autoimmune encephalomyelitis.
        Arch Neurol. 2008; 65: 753-761
        • Li Y.
        • Chen J.
        • Chen X.G.
        • Wang L.
        • Gautam S.C.
        • Xu Y.X.
        • et al.
        Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery.
        Neurology. 2002; 59: 514-523
        • Zappia E.
        • Casazza S.
        • Pedemonte E.
        • Benvenuto F.
        • Bonanni I.
        • Gerdoni E.
        • et al.
        Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy.
        Blood. 2005; 106: 1755-1761
        • Zhang J.
        • Li Y.
        • Chen J.
        • Cui Y.
        • Lu M.
        • Elias S.B.
        • et al.
        Human bone marrow stromal cell treatment improves neurological functional recovery in EAE mice.
        Exp Neurol. 2005; 195: 16-26
        • Blurton-Jones M.
        • Kitazawa M.
        • Martinez-Coria H.
        • Castello N.A.
        • Muller F.J.
        • Loring J.F.
        • et al.
        Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease.
        Proc Natl Acad Sci U S A. 2009; 106: 13594-13599
        • Corti S.
        • Locatelli F.
        • Donadoni C.
        • Guglieri M.
        • Papadimitriou D.
        • Strazzer S.
        • et al.
        Wild-type bone marrow cells ameliorate the phenotype of SOD1-G93A ALS mice and contribute to CNS, heart and skeletal muscle tissues.
        Brain. 2004; 127: 2518-2532
        • Einstein O.
        • Fainstein N.
        • Vaknin I.
        • Mizrachi-Kol R.
        • Reihartz E.
        • Grigoriadis N.
        • et al.
        Neural precursors attenuate autoimmune encephalomyelitis by peripheral immunosuppression.
        Ann Neurol. 2007; 61: 209-218
        • Karussis D.M.
        • Slavin S.
        • Ben-Nun A.
        • Ovadia H.
        • Vourka-Karussis U.
        • Lehmann D.
        • et al.
        Chronic-relapsing experimental autoimmune encephalomyelitis (CR-EAE): treatment and induction of tolerance, with high dose cyclophosphamide followed by syngeneic bone marrow transplantation.
        J Neuroimmunol. 1992; 39: 201-210
        • Lee H.J.
        • Kim K.S.
        • Park I.H.
        • Kim S.U.
        Human neural stem cells over-expressing VEGF provide neuroprotection, angiogenesis and functional recovery in mouse stroke model.
        PLoS One. 2007; 2: e156
        • Nakao N.
        • Ogura M.
        • Nakai K.
        • Itakura T.
        Embryonic striatal grafts restore neuronal activity of the globus pallidus in a rodent model of Huntington's disease.
        Neuroscience. 1999; 88: 469-477
        • Park H.J.
        • Bang G.
        • Lee B.R.
        • Kim H.O.
        • Lee P.H.
        Neuroprotective effect of human mesenchymal stem cells in an animal model of double toxin-induced multiple system atrophy parkinsonism.
        Cell Transplant. 2011; 20: 827-835
        • Park H.J.
        • Lee P.H.
        • Bang O.Y.
        • Lee G.
        • Ahn Y.H.
        Mesenchymal stem cells therapy exerts neuroprotection in a progressive animal model of Parkinson's disease.
        J Neurochem. 2008; 107: 141-151
        • Pluchino S.
        • Quattrini A.
        • Brambilla E.
        • Gritti A.
        • Salani G.
        • Dina G.
        • et al.
        Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis.
        Nature. 2003; 422: 688-694
        • Stemberger S.
        • Jamnig A.
        • Stefanova N.
        • Lepperdinger G.
        • Reindl M.
        • Wenning G.K.
        Mesenchymal stem cells in a transgenic mouse model of multiple system atrophy: immunomodulation and neuroprotection.
        PLoS One. 2011; 6: e19808
        • Taguchi A.
        • Soma T.
        • Tanaka H.
        • Kanda T.
        • Nishimura H.
        • Yoshikawa H.
        • et al.
        Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model.
        J Clin Invest. 2004; 114: 330-338
        • Xuan A.G.
        • Long D.H.
        • Gu H.G.
        • Yang D.D.
        • Hong L.P.
        • Leng S.L.
        BDNF improves the effects of neural stem cells on the rat model of Alzheimer's disease with unilateral lesion of fimbria-fornix.
        Neurosci Lett. 2008; 440: 331-335
        • Thomson J.A.
        • Itskovitz-Eldor J.
        • Shapiro S.S.
        • Waknitz M.A.
        • Swiergiel J.J.
        • Marshall V.S.
        • et al.
        Embryonic stem cell lines derived from human blastocysts.
        Science. 1998; 282: 1145-1147
        • Kim M.
        • Habiba A.
        • Doherty J.M.
        • Mills J.C.
        • Mercer R.W.
        • Huettner J.E.
        Regulation of mouse embryonic stem cell neural differentiation by retinoic acid.
        Dev Biol. 2009; 328: 456-471
        • Ben-David U.
        • Benvenisty N.
        The tumorigenicity of human embryonic and induced pluripotent stem cells.
        Nat Rev Cancer. 2011; 11: 268-277
        • Gage F.H.
        Mammalian neural stem cells.
        Science. 2000; 287: 1433-1438
        • Jiang Y.
        • Jahagirdar B.N.
        • Reinhardt R.L.
        • Schwartz R.E.
        • Keene C.D.
        • Ortiz-Gonzalez X.R.
        • et al.
        Pluripotency of mesenchymal stem cells derived from adult marrow.
        Nature. 2002; 418: 41-49
        • Flax J.D.
        • Aurora S.
        • Yang C.
        • Simonin C.
        • Wills A.M.
        • Billinghurst L.L.
        • et al.
        Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes.
        Nat Biotechnol. 1998; 16: 1033-1039
        • McKay R.
        Stem cells in the central nervous system.
        Science. 1997; 276: 66-71
        • Uchida N.
        • Buck D.W.
        • He D.
        • Reitsma M.J.
        • Masek M.
        • Phan T.V.
        • et al.
        Direct isolation of human central nervous system stem cells.
        Proc Natl Acad Sci U S A. 2000; 97: 14720-14725
        • Mathews D.J.
        • Sugarman J.
        • Bok H.
        • Blass D.M.
        • Coyle J.T.
        • Duggan P.
        • et al.
        Cell-based interventions for neurologic conditions: ethical challenges for early human trials.
        Neurology. 2008; 71: 288-293
        • Bossolasco P.
        • Cova L.
        • Calzarossa C.
        • Rimoldi S.G.
        • Borsotti C.
        • Deliliers G.L.
        • et al.
        Neuro-glial differentiation of human bone marrow stem cells in vitro.
        Exp Neurol. 2005; 193: 312-325
        • Pittenger M.F.
        • Mackay A.M.
        • Beck S.C.
        • Jaiswal R.K.
        • Douglas R.
        • Mosca J.D.
        • et al.
        Multilineage potential of adult human mesenchymal stem cells.
        Science. 1999; 284: 143-147
        • Sanchez-Ramos J.
        • Song S.
        • Cardozo-Pelaez F.
        • Hazzi C.
        • Stedeford T.
        • Willing A.
        • et al.
        Adult bone marrow stromal cells differentiate into neural cells in vitro.
        Exp Neurol. 2000; 164: 247-256
        • Liechty K.W.
        • MacKenzie T.C.
        • Shaaban A.F.
        • Radu A.
        • Moseley A.M.
        • Deans R.
        • et al.
        Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep.
        Nat Med. 2000; 6: 1282-1286
        • Uccelli A.
        • Moretta L.
        • Pistoia V.
        Mesenchymal stem cells in health and disease.
        Nat Rev Immunol. 2008; 8: 726-736
        • Caplan A.I.
        • Dennis J.E.
        Mesenchymal stem cells as trophic mediators.
        J Cell Biochem. 2006; 98: 1076-1084
        • Karussis D.
        • Karageorgiou C.
        • Vaknin-Dembinsky A.
        • Gowda-Kurkalli B.
        • Gomori J.M.
        • Kassis I.
        • et al.
        Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis.
        Arch Neurol. 2010; 67: 1187-1194
        • Yamout B.
        • Hourani R.
        • Salti H.
        • Barada W.
        • El-Hajj T.
        • Al-Kutoubi A.
        • et al.
        Bone marrow mesenchymal stem cell transplantation in patients with multiple sclerosis: a pilot study.
        J Neuroimmunol. 2010; 227: 185-189
        • Mazzini L.
        • Mareschi K.
        • Ferrero I.
        • Miglioretti M.
        • Stecco A.
        • Servo S.
        • et al.
        Mesenchymal stromal cell transplantation in amyotrophic lateral sclerosis: a long-term safety study.
        Cytotherapy. 2012; 14: 56-60
        • Mazzini L.
        • Ferrero I.
        • Luparello V.
        • Rustichelli D.
        • Gunetti M.
        • Mareschi K.
        • et al.
        Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: a phase I clinical trial.
        Exp Neurol. 2010; 223: 229-237
        • Nakagawa M.
        • Koyanagi M.
        • Tanabe K.
        • Takahashi K.
        • Ichisaka T.
        • Aoi T.
        • et al.
        Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts.
        Nat Biotechnol. 2008; 26: 101-106
        • Okita K.
        • Ichisaka T.
        • Yamanaka S.
        Generation of germline-competent induced pluripotent stem cells.
        Nature. 2007; 448: 313-317
        • Takahashi K.
        • Tanabe K.
        • Ohnuki M.
        • Narita M.
        • Ichisaka T.
        • Tomoda K.
        • et al.
        Induction of pluripotent stem cells from adult human fibroblasts by defined factors.
        Cell. 2007; 131: 861-872
        • Takahashi K.
        • Yamanaka S.
        Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.
        Cell. 2006; 126: 663-676
        • Yu J.
        • Vodyanik M.A.
        • Smuga-Otto K.
        • Antosiewicz-Bourget J.
        • Frane J.L.
        • Tian S.
        • et al.
        Induced pluripotent stem cell lines derived from human somatic cells.
        Science. 2007; 318: 1917-1920
        • Einstein O.
        • Karussis D.
        • Grigoriadis N.
        • Mizrachi-Kol R.
        • Reinhartz E.
        • Abramsky O.
        • et al.
        Intraventricular transplantation of neural precursor cell spheres attenuates acute experimental allergic encephalomyelitis.
        Mol Cell Neurosci. 2003; 24: 1074-1082
        • Genain C.P.
        • Roberts T.
        • Davis R.L.
        • Nguyen M.H.
        • Uccelli A.
        • Faulds D.
        • et al.
        Prevention of autoimmune demyelination in non-human primates by a cAMP-specific phosphodiesterase inhibitor.
        Proc Natl Acad Sci U S A. 1995; 92: 3601-3605
        • Isacson O.
        • Deacon T.W.
        • Pakzaban P.
        • Galpern W.R.
        • Dinsmore J.
        • Burns L.H.
        Transplanted xenogeneic neural cells in neurodegenerative disease models exhibit remarkable axonal target specificity and distinct growth patterns of glial and axonal fibres.
        Nat Med. 1995; 1: 1189-1194
        • Karussis D.M.
        • Slavin S.
        • Lehmann D.
        • Mizrachi-Koll R.
        • Abramsky O.
        • Ben-Nun A.
        Prevention of experimental autoimmune encephalomyelitis and induction of tolerance with acute immunosuppression followed by syngeneic bone marrow transplantation.
        J Immunol. 1992; 148: 1693-1698
        • Nauta A.J.
        • Fibbe W.E.
        Immunomodulatory properties of mesenchymal stromal cells.
        Blood. 2007; 110: 3499-3506
        • Koc O.N.
        • Day J.
        • Nieder M.
        • Gerson S.L.
        • Lazarus H.M.
        • Krivit W.
        Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH).
        Bone Marrow Transplant. 2002; 30: 215-222
        • Eliopoulos N.
        • Stagg J.
        • Lejeune L.
        • Pommey S.
        • Galipeau J.
        Allogeneic marrow stromal cells are immune rejected by MHC class I- and class II-mismatched recipient mice.
        Blood. 2005; 106: 4057-4065
        • Pluchino S.
        • Gritti A.
        • Blezer E.
        • Amadio S.
        • Brambilla E.
        • Borsellino G.
        • et al.
        Human neural stem cells ameliorate autoimmune encephalomyelitis in non-human primates.
        Ann Neurol. 2009; 66: 343-354
        • Uccelli A.
        • Prockop D.J.
        Why should mesenchymal stem cells (MSCs) cure autoimmune diseases?.
        Curr Opin Immunol. 2010; 22: 768-774
        • Fandrich F.
        • Dresske B.
        • Bader M.
        • Schulze M.
        Embryonic stem cells share immune-privileged features relevant for tolerance induction.
        J Mol Med. 2002; 80: 343-350
        • Li L.
        • Baroja M.L.
        • Majumdar A.
        • Chadwick K.
        • Rouleau A.
        • Gallacher L.
        • et al.
        Human embryonic stem cells possess immune-privileged properties.
        Stem Cells. 2004; 22: 448-456
        • Kondziolka D.
        • Wechsler L.
        • Goldstein S.
        • Meltzer C.
        • Thulborn K.R.
        • Gebel J.
        • et al.
        Transplantation of cultured human neuronal cells for patients with stroke.
        Neurology. 2000; 55: 565-569
        • Kondziolka D.
        • Steinberg G.K.
        • Wechsler L.
        • Meltzer C.C.
        • Elder E.
        • Gebel J.
        • et al.
        Neurotransplantation for patients with subcortical motor stroke: a phase 2 randomized trial.
        J Neurosurg. 2005; 103: 38-45
        • Savitz S.I.
        • Dinsmore J.
        • Wu J.
        • Henderson G.V.
        • Stieg P.
        • Caplan L.R.
        Neurotransplantation of fetal porcine cells in patients with basal ganglia infarcts: a preliminary safety and feasibility study.
        Cerebrovasc Dis. 2005; 20: 101-107
        • Lee J.S.
        • Hong J.M.
        • Moon G.J.
        • Lee P.H.
        • Ahn Y.H.
        • Bang O.Y.
        A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke.
        Stem Cells. 2010; 28: 1099-1106
        • Bang O.Y.
        • Lee J.S.
        • Lee P.H.
        • Lee G.
        Autologous mesenchymal stem cell transplantation in stroke patients.
        Ann Neurol. 2005; 57: 874-882
        • Andres R.H.
        • Choi R.
        • Steinberg G.K.
        • Guzman R.
        Potential of adult neural stem cells in stroke therapy.
        Regen Med. 2008; 3: 893-905
        • Bliss T.M.
        • Andres R.H.
        • Steinberg G.K.
        Optimizing the success of cell transplantation therapy for stroke.
        Neurobiol Dis. 2010; 37: 275-283
        • Lindvall O.
        Stem cells for cell therapy in Parkinson's disease.
        Pharmacol Res. 2003; 47: 279-287
        • Sadan O.
        • Bahat-Stromza M.
        • Barhum Y.
        • Levy Y.S.
        • Pisnevsky A.
        • Peretz H.
        • et al.
        Protective effects of neurotrophic factor-secreting cells in a 6-OHDA rat model of Parkinson disease.
        Stem Cells Dev. 2009; 18: 1179-1190
        • Kim J.H.
        • Auerbach J.M.
        • Rodriguez-Gomez J.A.
        • Velasco I.
        • Gavin D.
        • Lumelsky N.
        • et al.
        Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease.
        Nature. 2002; 418: 50-56
        • Lindvall O.
        • Kokaia Z.
        Prospects of stem cell therapy for replacing dopamine neurons in Parkinson's disease.
        Trends Pharmacol Sci. 2009; 30: 260-267
        • Lindvall O.
        • Kokaia Z.
        • Martinez-Serrano A.
        Stem cell therapy for human neurodegenerative disorders — how to make it work.
        Nat Med. 2004; : S42-S50
        • Mendez I.
        • Dagher A.
        • Hong M.
        • Gaudet P.
        • Weerasinghe S.
        • McAlister V.
        • et al.
        Simultaneous intrastriatal and intranigral fetal dopaminergic grafts in patients with Parkinson disease: a pilot study. Report of three cases.
        J Neurosurg. 2002; 96: 589-596
        • Gross R.E.
        • Watts R.L.
        • Hauser R.A.
        • Bakay R.A.
        • Reichmann H.
        • von Kummer R.
        • et al.
        Intrastriatal transplantation of microcarrier-bound human retinal pigment epithelial cells versus sham surgery in patients with advanced Parkinson's disease: a double-blind, randomised, controlled trial.
        Lancet Neurol. 2011; 10: 509-519
        • Freed C.R.
        • Greene P.E.
        • Breeze R.E.
        • Tsai W.Y.
        • DuMouchel W.
        • Kao R.
        • et al.
        Transplantation of embryonic dopamine neurons for severe Parkinson's disease.
        N Engl J Med. 2001; 344: 710-719
        • Olanow C.W.
        • Goetz C.G.
        • Kordower J.H.
        • Stoessl A.J.
        • Sossi V.
        • Brin M.F.
        • et al.
        A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson's disease.
        Ann Neurol. 2003; 54: 403-414
        • Dunnett S.B.
        • Rosser A.E.
        Stem cell transplantation for Huntington's disease.
        Exp Neurol. 2007; 203: 279-292
        • Bachoud-Levi A.
        • Bourdet C.
        • Brugieres P.
        • Nguyen J.P.
        • Grandmougin T.
        • Haddad B.
        • et al.
        Safety and tolerability assessment of intrastriatal neural allografts in five patients with Huntington's disease.
        Exp Neurol. 2000; 161: 194-202
        • Bachoud-Levi A.C.
        • Gaura V.
        • Brugieres P.
        • Lefaucheur J.P.
        • Boisse M.F.
        • Maison P.
        • et al.
        Effect of fetal neural transplants in patients with Huntington's disease 6 years after surgery: a long-term follow-up study.
        Lancet Neurol. 2006; 5: 303-309
        • Krystkowiak P.
        • Gaura V.
        • Labalette M.
        • Rialland A.
        • Remy P.
        • Peschanski M.
        • et al.
        Alloimmunisation to donor antigens and immune rejection following foetal neural grafts to the brain in patients with Huntington's disease.
        PLoS One. 2007; 2: e166
        • Keene C.D.
        • Chang R.C.
        • Leverenz J.B.
        • Kopyov O.
        • Perlman S.
        • Hevner R.F.
        • et al.
        A patient with Huntington's disease and long-surviving fetal neural transplants that developed mass lesions.
        Acta Neuropathol. 2009; 117: 329-338
        • Capetian P.
        • Knoth R.
        • Maciaczyk J.
        • Pantazis G.
        • Ditter M.
        • Bokla L.
        • et al.
        Histological findings on fetal striatal grafts in a Huntington's disease patient early after transplantation.
        Neuroscience. 2009; 160: 661-675
        • Reuter I.
        • Tai Y.F.
        • Pavese N.
        • Chaudhuri K.R.
        • Mason S.
        • Polkey C.E.
        • et al.
        Long-term clinical and positron emission tomography outcome of fetal striatal transplantation in Huntington's disease.
        J Neurol Neurosurg Psychiatry. 2008; 79: 948-951
        • Cicchetti F.
        • Saporta S.
        • Hauser R.A.
        • Parent M.
        • Saint-Pierre M.
        • Sanberg P.R.
        • et al.
        Neural transplants in patients with Huntington's disease undergo disease-like neuronal degeneration.
        Proc Natl Acad Sci U S A. 2009; 106: 12483-12488
        • Lee P.H.
        • Lee J.E.
        • Kim H.S.
        • Song S.K.
        • Lee H.S.
        • Nam H.S.
        • et al.
        A randomized trial of mesenchymal stem cells in multiple system atrophy.
        Ann Neurol. 2012; 72: 32-40
        • Forostyak S.
        • Jendelova P.
        • Kapcalova M.
        • Arboleda D.
        • Sykova E.
        Mesenchymal stromal cells prolong the lifespan in a rat model of amyotrophic lateral sclerosis.
        Cytotherapy. 2011; 13: 1036-1046
        • Vercelli A.
        • Mereuta O.M.
        • Garbossa D.
        • Muraca G.
        • Mareschi K.
        • Rustichelli D.
        • et al.
        Human mesenchymal stem cell transplantation extends survival, improves motor performance and decreases neuroinflammation in mouse model of amyotrophic lateral sclerosis.
        Neurobiol Dis. 2008; 31: 395-405
      1. Uccelli A, Milanese M, Principato MC, Morando S, Bonifacino T, Vergani L, et al. 757 Intravenous mesenchymal stem cells improve survival and motor function in ex- 758 perimental amyotrophic lateral sclerosis, Mol Med 2012;18(1):794–80.

        • Deda H.
        • Inci M.C.
        • Kurekci A.E.
        • Sav A.
        • Kayihan K.
        • Ozgun E.
        • et al.
        Treatment of amyotrophic lateral sclerosis patients by autologous bone marrow-derived hematopoietic stem cell transplantation: a 1-year follow-up.
        Cytotherapy. 2009; 11: 18-25
        • Traub R.
        • Mitsumoto H.
        • Rowland L.P.
        Research advances in amyotrophic lateral sclerosis, 2009 to 2010.
        Curr Neurol Neurosci Rep. 2011; 11: 67-77
        • Beers D.R.
        • Henkel J.S.
        • Xiao Q.
        • Zhao W.
        • Wang J.
        • Yen A.A.
        • et al.
        Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis.
        Proc Natl Acad Sci U S A. 2006; 103: 16021-16026
        • Appel S.H.
        • Engelhardt J.I.
        • Henkel J.S.
        • Siklos L.
        • Beers D.R.
        • Yen A.A.
        • et al.
        Hematopoietic stem cell transplantation in patients with sporadic amyotrophic lateral sclerosis.
        Neurology. 2008; 71: 1326-1334
        • Corti S.
        • Locatelli F.
        • Papadimitriou D.
        • Del Bo R.
        • Nizzardo M.
        • Nardini M.
        • et al.
        Neural stem cells LewisX+ CXCR4+ modify disease progression in an amyotrophic lateral sclerosis model.
        Brain. 2007; 130: 1289-1305
        • Xu L.
        • Yan J.
        • Chen D.
        • Welsh A.M.
        • Hazel T.
        • Johe K.
        • et al.
        Human neural stem cell grafts ameliorate motor neuron disease in SOD-1 transgenic rats.
        Transplantation. 2006; 82: 865-875
        • Dimos J.T.
        • Rodolfa K.T.
        • Niakan K.K.
        • Weisenthal L.M.
        • Mitsumoto H.
        • Chung W.
        • et al.
        Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons.
        Science. 2008; 321: 1218-1221
        • Karumbayaram S.
        • Novitch B.G.
        • Patterson M.
        • Umbach J.A.
        • Richter L.
        • Lindgren A.
        • et al.
        Directed differentiation of human-induced pluripotent stem cells generates active motor neurons.
        Stem Cells. 2009; 27: 806-811
        • Ben-Hur T.
        • Einstein O.
        • Mizrachi-Kol R.
        • Ben-Menachem O.
        • Reinhartz E.
        • Karussis D.
        • et al.
        Transplanted multipotential neural precursor cells migrate into the inflamed white matter in response to experimental autoimmune encephalomyelitis.
        Glia. 2003; 41: 73-80
        • Aharonowiz M.
        • Einstein O.
        • Fainstein N.
        • Lassmann H.
        • Reubinoff B.
        • Ben-Hur T.
        Neuroprotective effect of transplanted human embryonic stem cell-derived neural precursors in an animal model of multiple sclerosis.
        PLoS One. 2008; 3: e3145
        • Gerdoni E.
        • Gallo B.
        • Casazza S.
        • Musio S.
        • Bonanni I.
        • Pedemonte E.
        • et al.
        Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis.
        Ann Neurol. 2007; 61: 219-227
        • Freedman M.S.
        • Bar-Or A.
        • Atkins H.L.
        • Karussis D.
        • Frassoni F.
        • Lazarus H.
        • et al.
        The therapeutic potential of mesenchymal stem cell transplantation as a treatment for multiple sclerosis: consensus report of the International MSCT Study Group.
        Mult Scler. 2010; 16: 503-510
        • Uccelli A.
        • Laroni A.
        • Freedman M.S.
        Mesenchymal stem cells for the treatment of multiple sclerosis and other neurological diseases.
        Lancet Neurol. 2011; 10: 649-656
        • Connick P.
        • Kolappan M.
        • Crawley C.
        • Webber D.J.
        • Patani R.
        • Michell A.W.
        • et al.
        Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study.
        Lancet Neurol. 2012; 11: 150-156
        • Muraro P.A.
        • Douek D.C.
        • Packer A.
        • Chung K.
        • Guenaga F.J.
        • Cassiani-Ingoni R.
        • et al.
        Thymic output generates a new and diverse TCR repertoire after autologous stem cell transplantation in multiple sclerosis patients.
        J Exp Med. 2005; 201: 805-816
        • Burt R.K.
        • Cohen B.A.
        • Russell E.
        • Spero K.
        • Joshi A.
        • Oyama Y.
        • et al.
        Hematopoietic stem cell transplantation for progressive multiple sclerosis: failure of a total body irradiation-based conditioning regimen to prevent disease progression in patients with high disability scores.
        Blood. 2003; 102: 2373-2378
        • Karussis D.
        • Vaknin-Dembinsky A.
        Hematopoietic stem cell transplantation in multiple sclerosis: a review of the clinical experience and a report of an international meeting.
        Expert Rev Clin Immunol. 2010; 6: 347-352
        • Fassas A.
        • Anagnostopoulos A.
        • Kazis A.
        • Kapinas K.
        • Sakellari I.
        • Kimiskidis V.
        • et al.
        Peripheral blood stem cell transplantation in the treatment of progressive multiple sclerosis: first results of a pilot study.
        Bone Marrow Transplant. 1997; 20: 631-638
        • Burt R.K.
        • Loh Y.
        • Cohen B.
        • Stefoski D.
        • Balabanov R.
        • Katsamakis G.
        • et al.
        Autologous non-myeloablative haemopoietic stem cell transplantation in relapsing–remitting multiple sclerosis: a phase I/II study.
        Lancet Neurol. 2009; 8: 244-253
        • Saccardi R.
        • Mancardi G.L.
        • Solari A.
        • Bosi A.
        • Bruzzi P.
        • Di Bartolomeo P.
        • et al.
        Autologous HSCT for severe progressive multiple sclerosis in a multicenter trial: impact on disease activity and quality of life.
        Blood. 2005; 105: 2601-2607
        • Ni X.S.
        • Ouyang J.
        • Zhu W.H.
        • Wang C.
        • Chen B.
        Autologous hematopoietic stem cell transplantation for progressive multiple sclerosis: report of efficacy and safety at three yr of follow up in 21 patients.
        Clin Transplant. 2006; 20: 485-489
        • Krasulova E.
        • Trneny M.
        • Kozak T.
        • Vackova B.
        • Pohlreich D.
        • Kemlink D.
        • et al.
        High-dose immunoablation with autologous haematopoietic stem cell transplantation in aggressive multiple sclerosis: a single centre 10-year experience.
        Mult Scler. 2010; 16: 685-693
        • Mancardi G.L.
        • Sormani M.P.
        • Di Gioia M.
        • Vuolo L.
        • Gualandi F.
        • Amato M.P.
        • et al.
        Autologous haematopoietic stem cell transplantation with an intermediate intensity conditioning regimen in multiple sclerosis: the Italian multi-centre experience.
        Mult Scler. 2012; 18: 835-842
        • Field R.E.
        • Buchanan J.A.
        • Copplemans M.G.
        • Aichroth P.M.
        Bone-marrow transplantation in Hurler's syndrome. Effect on skeletal development.
        J Bone Joint Surg Br. 1994; 76: 975-981
        • Krivit W.
        • Peters C.
        • Shapiro E.G.
        Bone marrow transplantation as effective treatment of central nervous system disease in globoid cell leukodystrophy, metachromatic leukodystrophy, adrenoleukodystrophy, mannosidosis, fucosidosis, aspartylglucosaminuria, Hurler, Maroteaux-Lamy, and Sly syndromes, and Gaucher disease type III.
        Curr Opin Neurol. 1999; 12: 167-176
        • Jin H.K.
        • Carter J.E.
        • Huntley G.W.
        • Schuchman E.H.
        Intracerebral transplantation of mesenchymal stem cells into acid sphingomyelinase-deficient mice delays the onset of neurological abnormalities and extends their life span.
        J Clin Invest. 2002; 109: 1183-1191
        • Barberi T.
        • Bradbury M.
        • Dincer Z.
        • Panagiotakos G.
        • Socci N.D.
        • Studer L.
        Derivation of engraftable skeletal myoblasts from human embryonic stem cells.
        Nat Med. 2007; 13: 642-648
        • Darabi R.
        • Gehlbach K.
        • Bachoo R.M.
        • Kamath S.
        • Osawa M.
        • Kamm K.E.
        • et al.
        Functional skeletal muscle regeneration from differentiating embryonic stem cells.
        Nat Med. 2008; 14: 134-143
        • De Bari C.
        • Dell'Accio F.
        • Vandenabeele F.
        • Vermeesch J.R.
        • Raymackers J.M.
        • Luyten F.P.
        Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane.
        J Cell Biol. 2003; 160: 909-918
        • Gussoni E.
        • Bennett R.R.
        • Muskiewicz K.R.
        • Meyerrose T.
        • Nolta J.A.
        • Gilgoff I.
        • et al.
        Long-term persistence of donor nuclei in a Duchenne muscular dystrophy patient receiving bone marrow transplantation.
        J Clin Invest. 2002; 110: 807-814
        • Lapidos K.A.
        • Chen Y.E.
        • Earley J.U.
        • Heydemann A.
        • Huber J.M.
        • Chien M.
        • et al.
        Transplanted hematopoietic stem cells demonstrate impaired sarcoglycan expression after engraftment into cardiac and skeletal muscle.
        J Clin Invest. 2004; 114: 1577-1585
        • Wernig G.
        • Janzen V.
        • Schafer R.
        • Zweyer M.
        • Knauf U.
        • Hoegemeier O.
        • et al.
        The vast majority of bone-marrow-derived cells integrated into mdx muscle fibers are silent despite long-term engraftment.
        Proc Natl Acad Sci U S A. 2005; 102: 11852-11857
        • Dell'Agnola C.
        • Wang Z.
        • Storb R.
        • Tapscott S.J.
        • Kuhr C.S.
        • Hauschka S.D.
        • et al.
        Hematopoietic stem cell transplantation does not restore dystrophin expression in Duchenne muscular dystrophy dogs.
        Blood. 2004; 104: 4311-4318
        • Sampaolesi M.
        • Torrente Y.
        • Innocenzi A.
        • Tonlorenzi R.
        • D'Antona G.
        • Pellegrino M.A.
        • et al.
        Cell therapy of alpha-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts.
        Science. 2003; 301: 487-492
        • Sampaolesi M.
        • Blot S.
        • D'Antona G.
        • Granger N.
        • Tonlorenzi R.
        • Innocenzi A.
        • et al.
        Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs.
        Nature. 2006; 444: 574-579
        • Benchaouir R.
        • Meregalli M.
        • Farini A.
        • D'Antona G.
        • Belicchi M.
        • Goyenvalle A.
        • et al.
        Restoration of human dystrophin following transplantation of exon-skipping-engineered DMD patient stem cells into dystrophic mice.
        Cell Stem Cell. 2007; 1: 646-657
        • Torrente Y.
        • Belicchi M.
        • Marchesi C.
        • Dantona G.
        • Cogiamanian F.
        • Pisati F.
        • et al.
        Autologous transplantation of muscle-derived CD133+ stem cells in Duchenne muscle patients.
        Cell Transplant. 2007; 16: 563-577
        • Yazan A
        • Stephen Coons
        • Chapman K.
        Catastrophic demyelinating encephalomyelitis after intrathecal and intravenous stem cell transplantation in a patient with multiple sclerosis..
        J Child Neurol. 2012; 27 ([Epub 2011 Dec 7]): 632-635
        • Amariglio N.
        • Hirshberg A.
        • Scheithauer B.W.
        • Cohen Y.
        • Loewenthal R.
        • Trakhtenbrot L.
        • et al.
        Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient.
        PLoS Med. 2009; 6: e1000029
        • Field RE
        • Buchanan JA
        • Copplemans MG
        • Aichroth PM
        Bone-marrow transplantation in Hurler's syndrome. Effect on skeletal development.
        J Bone Joint Surg Br. 1994; 76: 975-981