Advertisement

Hereditary cerebral small vessel diseases: A review

Published:August 06, 2012DOI:https://doi.org/10.1016/j.jns.2012.07.041

      Abstract

      Cerebral microangiopathies are responsible of a great number of strokes. In the recent years advances in molecular genetics identified several monogenic conditions involving cerebral small vessels and predisposing to ischemic and/or hemorrhagic stroke and diffuse white matter disease leading to vascular dementia. Clinical features and diagnostic clues of these conditions, [cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL), COL4A1-related cerebral small vessel diseases, autosomal dominant retinal vasculopathy with cerebral leukodystrophy (AD-RVLC), and Fabry's disease] are here reviewed. Albeit with variable phenotypes and with different defective genes, all these disorders produce arteriopathy and microvascular disintegration with changes in brain functions. Specific diagnostic tools are recommended, genetic analysis being the gold standard for the diagnosis.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Joutel A.
        • Corpechot C.
        • Ducros A.
        • Vahedi K.
        • Chabriat H.
        • Mouton P.
        • et al.
        Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia.
        Nature. 1996; 383: 707-710
        • Stromillo M.L.
        • Dotti M.T.
        • Battaglini M.
        • Mortilla M.
        • Bianchi S.
        • Plewnia K.
        • et al.
        Structural and metabolic brain abnormalities in preclinical cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy.
        J Neurol Neurosurg Psychiatry. 2009; 80: 41-47
        • Sicurelli F.
        • Dotti M.T.
        • De Stefano N.
        • Malandrini A.
        • Mondelli M.
        • Bianchi S.
        • et al.
        Peripheral neuropathy in CADASIL.
        J Neurol. 2005; 252: 1206-1209
        • Dotti M.T.
        • De Stefano N.
        • Bianchi S.
        • Malandrini A.
        • Batisti C.
        • Cardaioli E.
        • et al.
        A novel NOTCH3 frameshift deletion and mitocondrial abnormalities in patient with CADASIL.
        Arch Neurol. 2004; 61: 942-945
        • Malandrini A.
        • Gaudiano C.
        • Gambelli S.
        • Berti G.
        • Serni G.
        • Bianchi S.
        • et al.
        Diagnostic value of ultrastructural skin biopsy studies in CADASIL.
        Neurology. 2007; 68: 1430-1432
        • Bianchi S.
        • Dotti M.T.
        • Federico A.
        Physiology and pathology of NOTCH3 signalling system.
        J Cell Physiol. 2006; 207: 300-308
        • Federico A.
        • Bianchi S.
        • Dotti M.T.
        The spectrum of mutations for CADASIL diagnosis.
        Neurol Sci. 2005; 26: 117-124
        • Mazzei R.
        • Conforti F.L.
        • Lanza P.L.
        • Sprovieri T.
        • Lupo M.R.
        • Gallo O.
        • et al.
        A novel Notch3 gene mutation not involving a cysteine residue in an Italian family with CADASIL.
        Neurology. 2004; 63: 561-564
        • Pantoni L.
        • Pescini F.
        • Nannucci S.
        • Sarti C.
        • Bianchi S.
        • Dotti M.T.
        • et al.
        Comparison of clinical, familial, and MRI features of CADASIL and NOTCH3-negative patients.
        Neurology. 2010; 74: 57-63
        • Bianchi S.
        • Rufa A.
        • Ragno M.
        • D'Eramo C.
        • Pescini F.
        • Pantoni L.
        • et al.
        High frequency of exon 10 mutations in the NOTCH3 gene in Italian CADASIL families: phenotypic peculiarities.
        J Neurol. 2010; 257: 1039-1042
        • Dotti M.T.
        • Federico A.
        • Mazzei R.
        • Bianchi S.
        • Scali O.
        • Conforti F.L.
        • et al.
        The spectrum of NOTCH3 mutations in 28 Italian CADASIL families.
        J Neurol Neurosurg Psychiatry. 2005; 76: 736-738
        • Fukutake T.
        Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL): from discovery to gene identification.
        J Stroke Cerebrovasc Dis. 2011; 20: 85-93
        • Nishimoto Y.
        • Shibata M.
        • Onodera O.
        • Suzuki N.
        Neurological picture. Neuroaxonal integrity evaluated by MR spectroscopy in a case of CARASIL.
        J Neurol Neurosurg Psychiatry. 2011; 82: 860-861
        • Zheng D.M.
        • Xu F.F.
        • Gao Y.
        • Zhang H.
        • Han S.C.
        • Bi G.R.
        A Chinese pedigree of cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL): clinical and radiological features.
        J Clin Neurosci. 2009; 16: 847-849
        • Mendioroz M.
        • Fernández-Cadenas I.
        • Del Río-Espinola A.
        • Rovira A.
        • Solé E.
        • Fernández-Figueras M.T.
        • et al.
        A missense HTRA1 mutation expands CARASIL syndrome to the Caucasian population.
        Neurology. 2010; 75: 2033-2035
        • Yanagawa S.
        • Ito N.
        • Arima K.
        • Ikeda S.
        Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy.
        Neurology. 2002; 58: 817-820
        • Nishimoto Y.
        • Shibata M.
        • Nihonmatsu M.
        • Nozaki H.
        • Shiga A.
        • Shirata A.
        • et al.
        A novel mutation in the HTRA1 gene causes CARASIL without alopecia.
        Neurology. 2011; 76: 1353-1355
        • Oide T.
        • Nakayama H.
        • Yanagawa S.
        • Ito N.
        • Ikeda S.
        • Arima K.
        Extensive loss of arterial medial smooth muscle cells and mural extracellular matrix in cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL).
        Neuropathology. 2008; 28: 132-142
        • Hara K.
        • Shiga A.
        • Fukutake T.
        • Nozaki H.
        • Miyashita A.
        • Yokoseki A.
        • et al.
        Association of HTRA1 mutations and familial ischemic cerebral small-vessel disease.
        N Engl J Med. 2009; 360: 1729-1739
        • Shiga A.
        • Nozaki H.
        • Yokoseki A.
        • Nihonmatsu M.
        • Kawata H.
        • Kato T.
        • et al.
        Cerebral small-vessel disease protein HTRA1 controls the amount of TGF-β1 via cleavage of proTGF-β1.
        Hum Mol Genet. 2011; 20: 1800-1810
        • Leask A.
        • Abraham D.J.
        TGF-beta signaling and the fibrotic response.
        FASEB J. 2004; 18: 816-827
        • Gould D.B.
        • Phalan F.C.
        • Breedveld G.J.
        • van Mil S.E.
        • Smith R.S.
        • Schimenti J.C.
        • et al.
        Mutations in COL4A1 cause perinatal cerebral hemorrhage and porencephaly.
        Science. 2005; 308: 1167-1171
        • Sibon I.
        • Coupry I.
        • Menegon P.
        • Bouchet J.P.
        • Gorry P.
        • Burgelin I.
        • et al.
        COL4A1 mutation in Axenfeld-Rieger anomaly with leukoencephalopathy and stroke.
        Ann Neurol. 2007; 62: 177-1784
        • Lanfranconi S.
        • Markus H.S.
        COL4A1 mutations as a monogenic cause of cerebral small vessel disease: a systematic review.
        Stroke. 2010; 41: e513-e518
        • Sibon I.
        • Coupry I.
        • Menegon P.
        • Bouchet J.P.
        • Gorry P.
        • Burgelin I.
        • et al.
        COL4A1 mutation in Axenfeld-Rieger anomaly with leukoencephalopathy and stroke.
        Ann Neurol. 2007; 62: 177-184
        • Bilguvar K.
        • DiLuna M.L.
        • Bizzarro M.J.
        • Bayri Y.
        • Schneider K.C.
        • Lifton R.P.
        • et al.
        Pacifier and Breastfeeding Trial Group. COL4A1 mutation in preterm intraventricular hemorrhage.
        J Pediatr. 2009; 155: 743-745
        • Sudhakar A.
        • Nyberg P.
        • Keshamouni V.G.
        • Mannam A.P.
        • Li J.
        • Sugimoto H.
        • et al.
        Human alpha-1 type IV collagen NC1 domain exhibits distinct antiangiogenic activity mediated by alpha-1-beta-1 integrin.
        J Clin Invest. 2005; 115: 2801-2810
        • Boutaud A.
        • Borza D.B.
        • Bondar O.
        • Gunwar S.
        • Netzer K.O.
        • Singh N.
        • et al.
        Type IV collagen of the glomerular basement membrane. Evidence that the chain specificity of network assembly is encoded by the noncollagenous NC1 domains.
        J Biol Chem. 2000; 275: 30716-30724
        • Ophoff R.A.
        • De Young J.
        • Service S.K.
        • Joosse M.
        • Caffo N.A.
        • Sandkuijl L.A.
        • et al.
        Hereditary vascular retinopathy, cerebroretinal vasculopathy, and hereditary endotheliopathy with retinopathy, nephropathy, and stroke map to a single locus on chromosome 3p21.1-p21.3.
        Am J Hum Genet. 2001; 69: 447-453
        • Grand M.G.
        • Kaine J.
        • Fulling K.
        • et al.
        Cerebroretinal vasculopathy: a new hereditary syndrome.
        Ophthalmology. 1988; 95: 649-659
        • Jen J.
        • Cohen A.H.
        • Yue Q.
        • Stout J.T.
        • Vinters H.V.
        • Nelson S.
        • et al.
        Hereditary endotheliopathy with retinopathy, nephropathy, and stroke (HERNS).
        Neurology. 1997; 49: 1322-1330
        • Crow Y.J.
        • Hayward B.E.
        • Parmar R.
        • Robins P.
        • Leitch A.
        • Ali M.
        • et al.
        Mutations in the gene encoding the 3–5′ DNA exonuclease TREX1 cause Aicardi–Goutières syndrome at the AGS1 locus.
        Nat Genet. 2006; 38: 917-920
        • Rice G.
        • Newman W.G.
        • Dean J.
        • Patrick T.
        • Parmar R.
        • Flintoff K.
        • et al.
        Heterozygous mutations in TREX1 cause familial chilblain lupus and dominant Aicardi–Goutieres syndrome.
        Am J Hum Genet. 2007; 80: 811-815
        • Mazur D.J.
        • Perrino F.W.
        Identification and expression of the TREX1 and TREX2 cDNA sequences encoding mammalian 3′–>5′ exonucleases.
        J Biol Chem. 1999; 274: 19655-19660
        • Kint J.A.
        The enzyme defect in Fabry's disease.
        Nature. 1970; 227: 1173
        • Garman S.C.
        • Garboczi D.N.
        The molecular defect leading to Fabry disease: structure of human alpha-galactosidase.
        J Mol Biol. 2004; 337: 319-335
        • Meikle P.J.
        • Hopwood J.J.
        • Clague A.E.
        • Carrey W.F.
        Prevalence of lysosomal storage disorders.
        JAMA. 1999; 281: 249-254
        • Desnick R.J.
        • Ioannou Y.A.
        • Eng C.M.
        Fabry disease.
        in: Scriver C.R. Beaudet A.L. Sly W.S. Valle D. The metabolic and molecular bases of inherited disease. McGraw-Hill, New York2002: 3733-3774
        • Breunig F.
        • Wanner C.
        Update on Fabry disease: kidney involvement, renal progression and enzyme replacement therapy.
        J Nephrol. 2008; 21: 32-37
        • Parenti G.
        Treating lysosomal storage diseases with pharmacological chaperones: from concept to clinics.
        EMBO Mol Med. 2009; 1: 269-279
        • Andreotti G.
        • Guarracino M.R.
        • Cammisa M.
        • Correra A.
        • Cubellis M.V.
        Prediction of the responsiveness to pharmacological chaperones: lysosomal human alpha-galactosidase, a case of study.
        Orphanet J Rare Dis. 2012; 5: 36