Advertisement

The calcium-sensing receptor: A novel Alzheimer's disease crucial target?

      Abstract

      Alzheimer's disease (AD) is the most common human neurodegenerative ailment, the most prevalent (>95%) late-onset type of which has a still uncertain etiology. The progressive decline of cognitive functions, dementia, and physical disabilities of AD is caused by synaptic losses that progressively disconnect key neuronal networks in crucial brain areas, like the hippocampus and temporoparietal cortex, and critically impair language, sensory processing, memory, and conscious thought. AD's two main hallmarks are fibrillar amyloid-β (fAβ) plaques in extracellular spaces and intracellular accumulation of fAβ peptides and neurofibrillary tangles (NFTs). It is still undecided whether either or both these AD hallmarks cause or result from the disease. Recently, the dysregulation of calcium homeostasis has been advanced as a novel cause of AD. In this case, a suitable candidate of AD driver would be the Aβ peptides–binding/activated calcium-sensing receptor (CaSR), whose intracellular signalling is triggered by Aβ peptides. In this review, we briefly discuss CaSR's roles in normal adult human astrocytes (NAHAs) and their possible impacts on AD.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Alzheimer Association
        2008 Alzheimer disease facts and figures.
        Alzheimers Dement. 2008; 4: 110-133
        • Crews L.
        • Masliah E.
        Molecular mechanisms of neurodegeneration in Alzheimer disease.
        Hum Mol Genet. 2010; 19: R12-R20
        • Steiner H.
        • Capell A.
        • Leimer U.
        • Haass C.
        Genes and mechanisms involved in beta-amyloid generation and Alzheimer's disease.
        Eur Arch Psychiatry Clin Neurosci. 1999; 249: 266-270
        • Cabrejo L.
        • Guyant-Marechal L.
        • Laquerriere A.
        • Vercelletto M.
        • De la Fournière F.
        • Thomas-Antérion C.
        • et al.
        Phenotype associated with APP duplication in five families.
        Brain. 2006; 129: 2966-2976
        • Guyant-Marechal L.A.
        • Rovelet-Lecrux L.
        • Goumidi E.
        • Cousin E.
        • Hannequin D.
        • Raux G.
        • et al.
        Variations in the APP gene promoter region and risk of Alzheimer disease.
        Neurology. 2007; 68: 684-687
        • LaFerla F.M.
        • Green K.N.
        • Oddo S.
        Intracellular amyloid‐β in Alzheimer's disease.
        Nat Rev Neurosci. 2007; 8: 499-509
        • Aizenstein H.J.
        • Nebes R.D.
        • Saxton J.A.
        • Price J.C.
        • Mathis C.A.
        • Tsopelas N.D.
        • et al.
        Frequent amyloid deposition without significant cognitive impairment among the elderly.
        Arch Neurol. 2008; 65: 1509-1517
        • Selkoe D.
        • Mandelkow E.
        • Holtzman D.
        Deciphering Alzheimer disease.
        in: Selkoe D. Mandelkow E. Holtzman D. The biology of Alzheimer disease. Cold Spring Harbor Press, Cold Spring Harbor, New York2012: 1-8
        • Lue L.F.
        • Kuo Y.M.
        • Roher A.E.
        • Brachova L.
        • Shen Y.
        • Sue L.
        • et al.
        Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer's disease.
        Am J Pathol. 1999; 155: 853-862
        • Tomic J.L.
        • Pensalfini A.
        • Head E.
        • Glabe C.G.
        Soluble fibrillar oligomer levels are elevated in Alzheimer disease brain and correlate with cognitive dysfunction.
        Neurobiol Dis. 2009; 35: 352-358
        • Leoni V.
        The effect of apolipoprotein E (ApoE) genotype on biomarkers of amyloidogenesis, tau pathology and neurodegeneration in Alzheimer's disease.
        Clin Chem Lab Med. 2011; 49: 375-383
        • Edbauer D.
        • Winkler E.
        • Regula J.T.
        • Pesold B.
        • Steiner H.
        • Haass C.
        Reconstitution of gamma-secretase activity.
        Nat Cell Biol. 2003; 5: 486-488
        • Hook G.
        • Hook V.
        • Kindy M.
        The cysteine protease inhibitor, E64d, reduces brain amyloid-β and improves memory deficits in Alzheimer's disease animal models by inhibiting cathepsin B, but not BACE1, β-secretase activity.
        J Alzheimers Dis. 2011; 26: 387-408
        • Araque A.
        • Navarrete M.
        Glial cells in neuronal network function.
        Philos Trans R Soc Lond B Biol Sci. 2010; 365: 2375-2381
        • Nedergaard M.
        • Verkhratsky A.
        Artifact versus reality—how astrocytes contribute to synaptic events.
        Glia. 2012; 60: 1013-1023
        • Giaume C.
        Astroglial wiring is adding complexity to neuroglial networking.
        Front Neuroenergetics. 2010; 2 ([pii:129])
        • Berridge M.J.
        Calcium hypothesis of Alzheimer's disease.
        Pflugers Arch. 2010; 459: 441-449
        • Green K.N.
        • LaFerla F.M.
        Linking calcium to Abeta and Alzheimer's disease.
        Neuron. 2008; 59: 190-194
        • Vincent A.J.
        • Gasperini R.
        • Foa L.
        • Small D.H.
        Astrocytes in Alzheimer's disease: emerging roles in calcium dysregulation and synaptic plasticity.
        J Alzheimers Dis. 2010; 22: 699-714
        • Green D.R.
        Means to an end: apoptosis and other cell death mechanisms.
        Cold Spring Harbor Press, Cold Spring Harbor, New York2010
        • Abramov A.Y.
        • Canevari L.
        • Duchen M.R.
        Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity.
        J Neurosci. 2003; 23: 5088-5095
        • Chiarini A.
        • Dal Prà I.
        • Gottardo R.
        • Bortolotti F.
        • Whitfield J.F.
        • Armato U.
        BH(4) (tetrahydrobiopterin)-dependent activation, but not the expression, of inducible NOS (nitric oxide synthase)-2 in proinflammatory cytokine-stimulated, cultured normal human astrocytes is mediated by MEK-ERK kinases.
        J Cell Biochem. 2005; 94: 731-743
        • Fuller S.
        • Steele M.
        • Münch G.
        Activated astroglia during chronic inflammation in Alzheimer's disease—do they neglect their neurosupportive roles?.
        Mutat Res. 2010; 690: 40-49
        • Blasko I.
        • Veerhuis R.
        • Stampfer-Kountchev M.
        • Saurwein-Teissl M.
        • Eikelenboom P.
        • Grubeck-Loebenstein B.
        Costimulatory effects of interferon-gamma and interleukin-1beta or tumor necrosis factor alpha on the synthesis of Abeta1-40 and Abeta1-42 by human astrocytes.
        Neurobiol Dis. 2000; 7: 682-689
        • Yan S.D.
        • Bierhaus A.
        • Nawroth P.P.
        • Stern D.M.
        RAGE and Alzheimer's disease: a progression factor for amyloid-beta-induced cellular perturbation?.
        J Alzheimers Dis. 2009; 16: 833-843
        • Cho H.J.
        • Kim S.K.
        • Jin S.M.
        • Hwang E.M.
        • Kim Y.S.
        • Huh K.
        • et al.
        IFN-gamma-induced BACE1 expression is mediated by activation of JAK2 and ERK1/2 signaling pathways and direct binding of STAT1 to BACE1 promoter in astrocytes.
        Glia. 2007; 55: 253-262
      1. (Consult for details:)
        • Brown E.M.
        • MacLeod R.J.
        Extracellular calcium sensing and extracellular calcium signaling.
        Physiol Rev. 2001; 81: 239-297
        • Msaouel P.
        • Nixon A.M.
        • Bramon A.P.
        • Baiba E.
        • Nentarchos N.E.
        Extracellular calcium-sensing receptor: an overview of physiology, pathophysiology and clinical perspectives.
        In Vivo. 2004; 18: 739-753
        • Hendy G.N.
        • Guarnieri V.
        • Canaff L.
        Calcium-sensing receptor and associated diseases.
        Prog Mol Biol Transl Sci. 2009; 89: 31-95
        • Jensen A.A.
        • Bräuner-Osborne H.
        Allosteric modulation of the calcium-sensing receptor.
        Curr Neuropharmacol. 2007; 5: 180-186
        • Magno A.L.
        • Ward B.K.
        • Ratajczak T.
        The calcium-sensing receptor: a molecular perspective.
        Endocr Rev. 2011; 32: 3-30
        • Bai M.
        • Trivedi S.
        • Brown E.M.
        Dimerization of the extracellular calcium-sensing receptor (CaR) on the cell surface of CaR-transfected HEK293 cells.
        J Biol Chem. 1998; 273: 23605-23610
        • Pidasheva S.
        • Grant M.
        • Canaff L.
        • Ercan O.
        • Kumar U.
        • Hendy G.N.
        Calcium-sensing receptor dimerizes in the endoplasmic reticulum: biochemical and biophysical characterization of CaSR mutants retained intracellularly.
        Hum Mol Genet. 2006; 15: 2200-2209
        • Hammerland L.G.
        • Krapcho K.J.
        • Garrett J.E.
        • Alasti N.
        • Hung B.C.
        • Simin R.T.
        • et al.
        Domains determining ligand specificity for Ca2+ receptors.
        Mol Pharmacol. 1999; 55: 642-648
        • Hofer A.M.
        • Brown E.M.
        Extracellular calcium sensing and signalling.
        Nat Rev Mol Cell Biol. 2003; 4: 530-538
        • Silve C.
        • Petrel C.
        • Leroy C.
        • Bruel H.
        • Mallet E.
        • Rognan D.
        • et al.
        Delineating a Ca2+ binding pocket within the venus flytrap module of the human calcium-sensing receptor.
        J Biol Chem. 2005; 280: 37917-37923
        • Chang W.
        • Shoback D.
        Extracellular Ca2+-sensing receptors—an overview.
        Cell Calcium. 2004; 35: 183-196
        • Conigrave A.D.
        • Quinn S.J.
        • Brown E.M.
        l-amino acid sensing by the extracellular Ca2+-sensing receptor.
        Proc Natl Acad Sci U S A. 2000; 97: 4814-4819
        • Brown E.M.
        G protein-coupled, extracellular Ca2+ (Ca2+(o))-sensing receptor enables Ca2+(o) to function as a versatile extracellular first messenger.
        Cell Biochem Biophys. 2000; 33: 63-95
        • Zhang Z.
        • Qiu W.
        • Quinn S.J.
        • Conigrave A.D.
        • Brown E.M.
        • Bai M.
        Three adjacent serines in the extracellular domains of the CaR are required for l-amino acid-mediated potentiation of receptor function.
        J Biol Chem. 2002; 277: 33727-33735
        • Chow J.Y.
        • Estrema C.
        • Orneles T.
        • Dong X.
        • Barrett K.E.
        • Dong H.
        Calcium-sensing receptor modulates extracellular Ca2+ entry via TRPC-encoded receptor-operated channels in human aortic smooth muscle cells.
        Am J Physiol Cell Physiol. 2011; 301: C461-C468
        • Dal Prà I.
        • Chiarini A.
        • Nemeth E.F.
        • Armato U.
        • Whitfield J.F.
        Roles of Ca2+ and the Ca2+-sensing receptor (CaSR) in the expression of inducible NOS (nitric oxide synthase)-2 and its BH4 (tetrahydrobiopterin)-dependent activation in cytokine-stimulated adult human astrocytes.
        J Cell Biochem. 2005; 96: 428-438
        • Ye C.
        • Ho-Pao C.L.
        • Kanazirska M.
        • Quinn S.
        • Rogers K.
        • Seidman C.E.
        • et al.
        Amyloid-beta proteins activate Ca(2+)-permeable channels through calcium-sensing receptors.
        J Neurosci Res. 1997; 47: 547-554
        • Chiarini A.
        • Dal Prà I.
        • Whitfield J.F.
        • Armato U.
        The killing of neurons by beta-amyloid peptides, prions, and pro-inflammatory cytokines.
        Ital J Anat Embryol. 2006; 111: 221-246
        • Chiarini A.
        • Dal Prà I.
        • Marconi M.
        • Chakravarthy B.
        • Whitfield J.F.
        • Armato U.
        Calcium-sensing receptor (CaSR) in human brain's pathophysiology: roles in late-onset Alzheimer's disease (LOAD).
        Curr Pharm Biotechnol. 2009; 10: 317-326
        • Fedrizzi L.
        • Carafoli E.
        Ca2+ dysfunction in neurodegenerative disorders: Alzheimer's disease.
        Biofactors. 2011; 37: 189-196
        • Hermes M.
        • Eichhoff G.
        • Garaschuk O.
        Intracellular calcium signalling in Alzheimer's disease.
        J Cell Mol Med. 2010; 14: 30-41
        • Chakroborty S.
        • Stutzmann G.E.
        Early calcium dysregulation in Alzheimer's disease: setting the stage for synaptic dysfunction.
        Sci China Life Sci. 2011; 54: 752-762
        • Small D.H.
        Dysregulation of calcium homeostasis in Alzheimer's disease.
        Neurochem Res. 2009; 34: 1824-1829
        • Yano S.
        • Brown E.M.
        • Chattopadhyay N.
        Calcium-sensing receptor in the brain.
        Cell Calcium. 2004; 35: 257-264
        • Conigrave A.D.
        • Quinn S.J.
        • Brown E.M.
        Cooperative multi-modal sensing and therapeutic implications of the extracellular Ca2+-sensing receptor.
        Trends Pharmacol Sci. 2000; 21: 401-407
        • Young S.H.
        • Rozengurt E.
        Amino acids and Ca2+ stimulate different patterns of Ca2+ oscillations through the Ca2+-sensing receptor.
        Am J Physiol Cell Physiol. 2002; 282: C1414-C1422
        • Bandyopadhyay S.
        • Jeong K.H.
        • Hansen J.T.
        • Vassilev P.M.
        • Brown E.M.
        • Chattopadhyay N.
        Calcium-sensing receptor stimulates secretion of an interferon-gamma-induced monokine (CXCL10) and monocyte chemo-attractant protein-3 in immortalized GnRH neurons.
        J Neurosci Res. 2007; 85: 882-895
        • Conley Y.P.
        • Mukherjee A.
        • Kammerer C.
        • DeKosky S.T.
        • Kamboh M.I.
        • Finegold D.N.
        • et al.
        Evidence supporting a role for the calcium-sensing receptor in Alzheimer disease.
        Am J Med Genet B Neuropsychiatr Genet. 2009; 150B: 703-709
        • Kerr J.N.
        • Denk W.
        Imaging in vivo: watching the brain in action.
        Nat Rev Neurosci. 2008; 9: 195-205
        • Chiarini A.
        • Dal Prà I.
        • Menapace L.
        • Pacchiana R.
        • Whitfield J.F.
        • Armato U.
        Soluble amyloid beta-peptide and myelin basic protein strongly stimulate, alone and in synergism with combined proinflammatory cytokines, the expression of functional nitric oxide synthase-2 in normal adult human astrocytes.
        Int J Mol Med. 2005; 16: 801-807
        • Chiarini A.
        • Armato U.
        • Pacchiana R.
        • Dal Prà I.
        Proteomic analysis of GTP cyclohydrolase 1 multiprotein complexes in cultured normal adult human astrocytes under both basal and cytokine-activated conditions.
        Proteomics. 2009; 9: 1850-1860
        • Chiarini A.
        • Whitfield J.
        • Bonafini C.
        • Chakravarthy B.
        • Armato U.
        • Dal Prà I.
        Amyloid-β(25–35), an amyloid-β(1–42) surrogate, and proinflammatory cytokines stimulate VEGF-A secretion by cultured, early passage, normoxic adult human cerebral astrocytes.
        J Alzheimers Dis. 2010; 21: 915-926
        • Putcha D.
        • Brickhouse M.
        • O'Keefe K.
        • Sullivan C.
        • Renz D.
        • Marshall G.
        • et al.
        Hippocampal hyperactivation associated with cortical thinning in Alzheimer's disease signature regions in non-demented elderly adults.
        J Neurosci. 2011; 31: 17680-17688
        • Dal Prà I.
        • Whitfield J.F.
        • Pacchiana R.
        • Bonafini C.
        • Talacchi A.
        • Chakravarthy B.
        • et al.
        The amyloid-β₄₂ proxy, amyloid-β (25–35), induces normal human cerebral astrocytes to produce amyloid-β₄₂.
        J Alzheimers Dis. 2011; 24: 335-347
        • Eisele Y.S.
        • Bolmont T.
        • Heikenwalder M.
        • Langer F.
        • Jacobson L.H.
        • Yan Z.X.
        • et al.
        Induction of cerebral beta-amyloidosis: intracerebral versus systemic Abeta inoculation.
        Proc Natl Acad Sci U S A. 2009; 106: 12926-12931