Advertisement

The vascular factor in Alzheimer's disease: A study in Golgi technique and electron microscopy

Published:August 06, 2012DOI:https://doi.org/10.1016/j.jns.2012.07.010

      Abstract

      Although the etiopathological background of Alzheimer's disease (AD) is mostly associated with the deposition of Αβ-peptide, the hyperphosphorylation of τ protein, the synaptic pathology and the mitochondrial alterations, the vascular factor may play substantial role in plotting the multifactorial pattern of the disease. We attempted to study the blood capillaries in the hippocampus, the acoustic, the visual and the parietal cortex in twelve early cases of Alzheimer's disease. Samples were processed for Golgi silver impregnation technique and electron microscopy. The morphological findings were compared with normal controls. The study of the brain capillaries in cases of AD, revealed numerous fusiform dilatations, tortuosities, abnormal branching and fusion, though the morphometric estimation revealed a decrease of the number of capillaries per mm3 in comparison with normal control brains. The ultrastructural study revealed mitochondrial abnormalities in the endothelial cells of a substantial number of capillaries and marked degeneration of the pericytes. Perivascular microglial proliferation was also prominent in the hippocampus and the parietal lobe. Our findings both in Golgi staining and electron microscopy plead in favor of the essential role that the microvascular alterations may play in the broad pathogenetic spectrum of AD.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Baloyannis S.
        • Costa V.
        • Arnaoutoglou A.
        • Arnaoutoglou H.
        Synaptic alterations in the molecular layer of the cerebellum in Alzheimer's disease.
        Neuropathol Appl Neurobiol. 1996; 22: 78-79
        • Baloyannis S.J.
        Dendritic pathology in Alzheimer's disease.
        J Neurol Sci. 2009; 15: 153-157
        • Jellinger K.
        • Bancher C.
        Neuropathology of Alzheimer's disease: a critical update.
        J Neural Transm Suppl. 1998; 54: 77-95
        • Terry R.D.
        • Katzman R.
        Senile dementia of the Alzheimer type.
        Ann Neurol. 1983; 14: 497-506
        • Montine T.J.
        • Phelps C.H.
        • Beach T.G.
        • Bigio E.H.
        • Cairns N.J.
        • Dickson D.W.
        • et al.
        Hyman National Institute on Aging-Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease: a practical approach.
        Acta Neuropathol. 2012; 123: 1-11
        • Shankar G.M.
        • Li S.
        • Mehta T.H.
        • Garcia-Munoz A.
        • Shepardson N.E.
        • Smith I.
        • et al.
        Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory.
        Nat Med. 2008; 14: 837-842
        • Goedert M.
        • Spillantini M.G.
        A century of Alzheimer's disease.
        Science. 2006; 314: 777-781
        • Bonilla E.
        • Tanji K.
        • Hirano M.
        • Vu T.H.
        • Di Mauro S.
        • Schon E.A.
        Mitochondrial involvement in Alzheimer's disease.
        Biochem Biophys Acta. 1999; 1410: 171-182
        • Baloyannis S.J.
        • Costa V.
        • Michmizos D.
        Mitochondrial alterations in Alzheimer's disease.
        Am J Alzheimers Dis Other Demen. 2004; 19: 89-93
        • Baloyannis S.J.
        Mitochondria are related to synaptic pathology in Alzheimer's disease.
        Int J Alzheimers Dis. Sept. 12 2011; 2011 ([Epub 2011]): 305395
        • de la Torre J.C.
        Cerebromicrovascular pathology in Alzheimer's disease compared to normal aging.
        Gerontology. 1997; 43: 26-43
        • Bell R.D.
        • Zlokovic B.V.
        Neurovascular mechanisms and blood–brain barrier disorder in Alzheimer's disease.
        Acta Neuropathol. 2009; 118: 103-113
        • Coria F.
        • Rubio I.
        Cerebral amyloid angiopathies.
        Neuropathol Appl Neurobiol. 1996; 22: 216-227
        • Ravens J.R.
        Vascular changes in the human senile brain.
        Adv Neurol. 1978; 20: 487-501
        • Sedaghat F.
        • Dedousi E.
        • Baloyannis I.
        • Tegos T.
        • Costa V.
        • Dimitriadis A.S.
        • et al.
        Brain SPECT findings of anosognosia in Alzheimer's disease.
        J Alzheimers Dis. 2010; 21: 641-647
        • Rapoport S.
        Positron emission tomography in Alzheimer's disease in relation to disease pathogenesis: a critical review.
        Cerebrovasc Brain Metab Rev. 1991; 3: 297-335
        • Luchsinger J.
        • Mayeux R.
        Cardiovascular risk factors and Alzheimer's disease.
        Curr Atheroscler Rep. 2004; 6: 261-266
        • Farkas E.
        • De Vos R.A.
        • Jansen Steur E.N.
        • Luiten P.G.
        Are Alzheimer's disease, hypertension, and cerebrocapillary damage related?.
        Neurobiol Aging. 2000; 21: 235-243
        • Hofman A.
        • Ott A.
        • Breteler M.M.
        • Bots M.L.
        • Slooter A.J.
        • van Harskamp F.
        • et al.
        Atherosclerosis, apolipoprotein E, and prevalence of dementia and Alzheimer's disease in the Rotterdam Study.
        Lancet. 1997; 349: 151-154
        • Higuchi Y.
        • Miyakawa T.
        • Shimoji A.
        • Katsugari S.
        Ultrastructural changes of blood vessels in the cerebral cortex in Alzheimer's disease.
        Jpn J Psychiatry Neurol. 1987; 41: 283-290
        • Farkas E.
        • De Jong G.I.
        • Apro E.
        • De Vos R.A.
        • Steur E.N.
        • Luiten P.G.
        Similar ultrastructural breakdown of cerebrocortical capillaries in Alzheimer's disease, Parkinson's disease, and experimental hypertension. What is the functional link?.
        Ann N Y Acad Sci. 2000; 903: 72-82
        • De Jong G.I.
        • Farkas E.
        • Stienstra C.M.
        • Plass J.R.
        • Keijser J.N.
        • de la Torre J.C.
        • et al.
        Cerebral hypoperfusion yields capillary damage in the hippocampal CA1 area that correlates with spatial memory impairment.
        Neuroscience. 1999; 91: 203-210
        • Keuker J.I.
        • Luiten P.G.
        • Fuchs E.
        Capillary changes in hippocampal CA1 and CA3 area of the aging rhesus monkey.
        Acta Neuropathol (Berl). 2000; 100: 665-672
        • Tofts P.S.
        • Kermode A.G.
        Measurement of the blood–brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts.
        Magn Reson Med. 1991; 17: 357-367
        • Zlokovic B.V.
        • Apuzzo M.L.
        Cellular and molecular neurosurgery: pathways from concept to reality—part II: vector systems and delivery methodologies for gene therapy of the central nervous system.
        Neurosurgery. 1997; 40: 805-812
        • Mann G.E.
        • Zlokovic B.V.
        • Yudilevich D.L.
        Evidence for a lactate transport system in the sarcolemmal membrane of the perfused rabbit heart: kinetics of unidirectional influx, carrier specificity and effects of glucagon.
        Biochim Biophys Acta. 1985; 819: 241-248
        • Zlokovic B.V.
        • Begley D.J.
        • Chain-Eliash D.G.
        Blood–brain barrier permeability to leucine‐enkephalin, d-alanine2-d-leucine5-enkephalin and their N-terminal amino acid (tyrosine).
        Brain Res. 1985; 336: 125-132
        • Zloković B.V.
        • Segal M.B.
        • Begley D.J.
        • Davson H.
        • Rakić L.
        Permeability of the blood–cerebrospinal fluid and blood–brain barriers to thyrotropin-releasing hormone.
        Brain Res. 1985; 358: 191-199
        • Zlokovic B.V.
        • Hyman S.
        • McComb J.G.
        • Lipovac M.N.
        • Tang G.
        • Davson H.
        Kinetics of arginine-vasopressin uptake at the blood–brain barrier.
        Biochim Biophys Acta. 1990; 1025: 191-198
        • Zlokovic B.V.
        • Mackic J.B.
        • Djuricic B.
        • Davson H.
        Kinetic analysis of leucine-enkephalin cellular uptake at the luminal side of the blood–brain barrier of an in situ perfused guinea-pig brain.
        J Neurochem. 1989; 53: 1333-1340
        • LaRue B.
        • Hogg E.
        • Sagare A.
        • Jovanovic S.
        • Maness L.
        • Maurer C.
        • et al.
        Method for measurement of the blood–brain barrier permeability in the perfused mouse brain: application to amyloid-beta peptide in wild type and Alzheimer's Tg2576 mice.
        J Neurosci Methods. 2004; 138: 233-242
        • Tsamis K.
        • Mytilinaios D.
        • Njau S.N.
        • Psaroulis D.
        • Mavroudis J.
        • Costa V.
        • et al.
        The combination of silver techniques for studying the pathology of Alzheimer's disease.
        Int J Neurosci. 2008; 118: 257-266
        • Sterio D.C.
        The unbiased estimation of number and sizes of arbitrary particles using the disector.
        J Microsc. 1984; 134: 127-136
        • Tata D.A.
        • Anderson B.J.
        A new method for the investigation of capillary structure.
        J Neurosci Methods. 2002; 113: 199-206
        • Braak H.
        • Braak E.
        Neuropathological staging of Alzheimer-related changes.
        Acta Neuropathol (Berl). 1991; 82: 239-259
        • Baloyannis S.J.
        • Costa V.
        • Mauroudis I.
        • Psaroulis D.
        • Manolides S.L.
        • Manolides L.S.
        Dendritic and spinal pathology in the acoustic cortex in Alzheimer's disease: morphological and morphometric estimation by Golgi technique and electron microscopy.
        Acta Otolaryngol. 2007; 127: 351-354
        • Bell M.A.
        • Ball M.J.
        Morphometric comparison of hippocampal microvasculature in ageing and demented people: diameters and densities.
        Acta Neuropathol. 1981; 53: 299-318
        • Zlokovic B.V.
        Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders.
        Nat Rev Neurosci. 2011; 12: 723-738
        • Paul J.
        • Strickland S.
        • Melchor J.P.
        Fibrin deposition accelerates neurovascular damage and neuroinflammation in mouse models of Alzheimer's disease.
        J Exp Med. 2007; 204: 1999-2008
        • Hunter J.M.
        • Kwan J.
        • Malek-Ahmadi M.
        • Maarouf C.L.
        • Kokjohn T.A.
        • Belden C.
        • et al.
        Morphological and pathological evolution of the brain microcirculation in aging and Alzheimer's disease.
        PLoS One. May 16 2012; 7 ([Epub 2012]): e36893
        • Kalaria R.N.
        • Pax A.B.
        Increased collagen content of cerebral microvessels in Alzheimer's disease.
        Brain Res. 1995; 705: 349-352
        • Zlokovic B.V.
        Clearing amyloid through the blood–brain barrier.
        J Neurochem. 2004; 89: 807-811
        • Wardkaw J.M.
        • Sandercock P.A.
        • Dennis M.S.
        • Starr J.
        Is breakdown of the blood–brain barrier responsible for lacunar stroke, leukoaraiosis and dementia?.
        Stroke. 2003; 34: 806-812
        • Bell R.D.
        • Winkler E.A.
        • Sagare A.P.
        • Singh I.
        • LaRue B.
        • Deane R.
        • et al.
        Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging.
        Neuron. 2010; 68: 409-427
        • Bell R.D.
        • Winkler E.A.
        • Singh I.
        • Sagare A.P.
        • Deane R.
        • Wu Z.
        • et al.
        Apolipoprotein E controls cerebrovascular integrity via cyclophilin A.
        Nature. 2012; 485: 512-516
        • Bonkowski D.
        • Katyshev V.
        • Balabanov R.D.
        • Borisov A.
        • Dore-Duffy P.
        The CNS microvascular pericyte: pericyte–astrocyte crosstalk in the regulation of tissue survival.
        Fluids Barriers CNS. 2011; 8: 8
        • Winkler E.A.
        • Bell R.D.
        • Zlokovic B.V.
        Central nervous system pericytes in health and disease.
        Nat Neurosci. 2011; 14: 1398-1405
        • Dalkara T.
        • Gursoy-Ozdemir Y.
        • Yemisci M.
        Brain microvascular pericytes in health and disease.
        Acta Neuropathol. 2011; 122: 1-9
        • Wegiel J.
        • Wisniewski H.M.
        Tubuloreticular structures in microglial cells, pericytes and endothelial cells in Alzheimer's disease.
        Acta Neuropathol. 1992; 83: 653-658
        • Torack R.M.
        Ultrastructure of capillary reaction to brain tumors.
        Arch Neurol. 1961; 5: 86-98
        • Castejón O.J.
        Ultrastructural pathology of cortical capillary pericytes in human traumatic brain oedema.
        Folia Neuropathol. 2011; 49: 162-173
        • Finkel E.
        The mitochondrion: is it central to apoptosis?.
        Science. 2001; 27: 624-626
        • Zheng L.I.
        The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses.
        Cell. 2004; 119: 873-887