Advertisement

Mitochondria and Alzheimer's disease

      Abstract

      Reductions in cerebral metabolism sufficient to impair cognition in normal individuals also occur in Alzheimer's disease (AD). FDG PET studies have shown that decreased glucose metabolism in AD precedes clinical diagnosis and the degree of clinical disability in AD correlates closely to the magnitude of the reduction in brain metabolism. This suggests that the clinical deterioration and metabolic impairment in AD are related closely. Diminished metabolism can lead to the hyperphosphorylation of tau and increased production of amyloid beta peptide, hallmarks of AD. These observations suggest also that early mitochondrially therapeutic interventions may be an important target in delaying AD progression in elderly individuals and in treating AD patients.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ballard C.
        • Gauthier S.
        • Corbett A.
        • Brayne C.
        • Aarsland D.
        • Jones E.
        Alzheimer's disease.
        Lancet. 2011; 377: 1019-1031
        • Chouliaras L.
        • Rutten B.P.
        • Kenis G.
        • Peerbooms O.
        • Visser P.J.
        • Verhey F.
        • et al.
        Epigenetic regulation in the pathophysiology of Alzheimer's disease.
        Prog Neurobiol. 2010; 90: 498-510
        • Petrozzi L.
        • Ricci G.
        • Giglioli N.J.
        • Siciliano G.
        • Mancuso M.
        Mitochondria and neurodegeneration.
        Biosci Rep. 2007; 27: 87-104
        • Galindo M.F.
        • Ikuta I.
        • Zhu X.
        • Casadesus G.
        • Jordán J.
        Mitochondrial biology in Alzheimer's disease pathogenesis.
        J Neurochem. 2010; 114: 933-945
        • Benard G.
        • Bellance N.
        • James D.
        • Parrone P.
        • Fernandez H.
        • Letellier T.
        • et al.
        Mitochondrial bioenergetics and structural network organization.
        J Cell Sci. 2007; 120: 838-848
        • Kann O.
        • Kovacs R.
        Mitochondria and neuronal activity.
        Am J Physiol Cell Physiol. 2007; 292: C641-C657
        • Rusakov D.A.
        Ca2+‐dependent mechanisms of presynaptic control at central synapses.
        Neuroscientist. 2006; 12: 317-326
        • Fukuyama H.
        • Ogawa M.
        • Yamauchi H.
        • Yamaguchi S.
        • Kimura J.
        • Yonekura Y.
        • et al.
        Altered cerebral energy metabolism in Alzheimer's disease: a PET study.
        J Nucl Med. 1994; 35: 1-6
        • Minoshima S.
        • Giordani B.
        • Berent S.
        • Frey K.A.
        • Foster N.L.
        • Kuhl D.E.
        Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease.
        Ann Neurol. 1997; 42: 85-94
        • Blass J.P.
        The mitochondrial spiral. An adequate cause of dementia in the Alzheimer's syndrome.
        Ann N Y Acad Sci. 2000; 924: 170-183
        • Frölich L.
        • Strauss M.
        • Kornhuber J.
        • Hoyer S.
        • Sorbi S.
        • Riederer P.
        • et al.
        Changes in pyruvate dehydrogenase complex (PDHc) activity and [3H]QNB-receptor binding in rat brain subsequent to intracerebroventricular injection of bromopyruvate.
        J Neural Transm Park Dis Dement Sect. 1990; 2: 169-178
        • Sorbi S.
        • Bird E.D.
        • Blass J.P.
        Decreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brain.
        Ann Neurol. 1983; 13: 72-78
        • Mao P.
        • Reddy P.H.
        Aging and amyloid beta-induced oxidative DNA damage and mitochondrial dysfunction in Alzheimer's disease: implications for early intervention and therapeutics.
        Biochim Biophys Acta. 2011; 1812: 1359-1370
        • Droge W.
        Free radicals in the physiological control of cell function.
        Physiol Rev. 2002; 82: 47-95
        • Valko M.
        • Leibfritz D.
        • Moncol J.
        • Cronin M.T.
        • Mazur M.
        • Telser J.
        Free radicals and antioxidants in normal physiological functions and human disease.
        Int J Biochem Cell Biol. 2007; 39: 44-84
        • Swerdlow R.H.
        • Khan S.M.
        A “mitochondrial cascade hypothesis” for sporadic Alzheimer's disease.
        Med Hypotheses. 2004; 63: 8-20
        • Caspersen C.
        • Wang N.
        • Yao J.
        • Sosunov A.
        • Chen X.
        • Lustbader J.W.
        • et al.
        Mitochondrial Abeta: a potential focal point for neuronal metabolic dysfunction in Alzheimer's disease.
        FASEB J. 2005; 19: 2040-2041
        • Crouch P.J.
        • Blake R.
        • Duce J.A.
        • Ciccotosto G.D.
        • Li Q.X.
        • Barnham K.J.
        • et al.
        Copper-dependent inhibition of human cytochrome c oxidase by a dimeric conformer of amyloidbeta1–42.
        J Neurosci. 2005; 25: 672-679
        • Devi L.
        • Prabhu B.M.
        • Galati D.F.
        • Avadhani N.G.
        • Anandatheerthavarada H.K.
        Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer's disease brain is associated with mitochondrial dysfunction.
        J Neurosci. 2006; 26: 9057-9068
        • Du H.
        • Guo L.
        • Fang F.
        • Chen D.
        • Sosunov A.A.
        • McKhann G.M.
        • et al.
        Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer's disease.
        Nat Med. 2008; 14: 1097-1105
        • Lin M.T.
        • Beal M.F.
        Alzheimer's APP mangles mitochondria.
        Nat Med. 2006; 12: 1241-1243
        • Loo D.T.
        • Copani A.
        • Pike C.J.
        • Whittemore E.R.
        • Walencewicz A.J.
        • Cotman C.W.
        Apoptosis is induced by beta-amyloid in cultured central nervous system neurons.
        Proc Natl Acad Sci U S A. 1993; 90: 7951-7955
        • Manczak M.
        • Anekonda T.S.
        • Henson E.
        • Park B.S.
        • Quinn J.
        • Reddy P.H.
        Mitochondria are a direct site of A beta accumulation in Alzheimer's disease neurons: implications for free radical generation and oxidative damage in disease progression.
        Hum Mol Genet. 2006; 15: 1437-1449
        • Pagani L.
        • Eckert A.
        Amyloid-beta interaction with mitochondria.
        Int J Alzheimers Dis. 2011; : 925050
        • Tillement L.
        • Lecanu L.
        • Yao W.
        • Greeson J.
        • Papadopoulos V.
        The spirostenol (22R,25R)-20alpha-spirost-5-en-3beta-yl hexanoate blocks mitochondrial uptake of Abeta in neuronal cells and prevents Abeta-induced impairment of mitochondrial function.
        Steroids. 2006; 71: 725-735
        • Beal M.F.
        Mitochondria take center stage in aging and neurodegeneration.
        Ann Neurol. 2005; 58: 495-505
        • Hansson Petersen C.A.
        • Alikhani N.
        • Behbahani H.
        • Wiehager B.
        • Pavlov P.F.
        • Alafuzoff I.
        • et al.
        The amyloid betapeptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae.
        Proc Natl Acad Sci U S A. 2008; 105: 13145-13150
        • Tillement L.
        • Lecanu L.
        • Papadopoulos V.
        Alzheimer's disease: effects of β-amyloid on mitochondria.
        Mitochondrion. 2011; 11: 13-21
        • Ferreiro E.
        • Oliveira C.R.
        • Pereira C.M.
        The release of calcium from the endoplasmic reticulum induced by amyloid-beta and prion peptides activates the mitochondrial apoptotic pathway.
        Neurobiol Dis. 2008; 30: 331-342
        • Schmidt C.
        • Lepsverdize E.
        • Chi S.L.
        • Das A.M.
        • Pizzo S.V.
        • Dityatev A.
        • et al.
        Amyloid precursor protein and amyloid beta-peptide bind to ATP synthase and regulate its activity at the surface of neural cells.
        Mol Psychiatry. 2008; 13: 953-969
        • Sergeant N.
        • Wattez A.
        • Galvan-Valencia M.
        • Ghestem A.
        • David J.P.
        • Lemoine J.
        Association of ATP synthase alpha-chain with neurofibrillary degeneration in Alzheimer's disease.
        Neuroscience. 2003; 117: 293-303
        • Hauptmann S.
        • Scherping I.
        • Dröse S.
        • Brandt U.
        • Schulz K.L.
        • Jendrach M.
        • et al.
        Mitochondrial dysfunction: an early event in Alzheimer pathology accumulates with age in AD transgenic mice.
        Neurobiol Aging. 2009; 30: 1574-1586
        • Rhein V.
        • Baysang G.
        • Rao S.
        • Meier F.
        • Bonert A.
        • Müller-Spahn F.
        • et al.
        Amyloid- beta leads to impaired cellular respiration, energy production and mitochondrial electron chain complex activities in human neuroblastoma cells.
        Cell Mol Neurobiol. 2009; 29: 1063-1071
        • Turrens J.F.
        Mitochondrial formation of reactive oxygen species.
        J Physiol. 2003; 552: 335-344
        • Carney J.M.
        • Starke-Reed P.E.
        • Oliver C.N.
        • Landum R.W.
        • Cheng M.S.
        • Wu J.F.
        • et al.
        Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert- butyl-alpha-phenylnitrone.
        Proc Natl Acad Sci U S A. 1991; 88: 3633-3636
        • Parfait B.
        • Chretien D.
        • Rötig A.
        • Marsac C.
        • Munnich A.
        • Rustin P.
        Compound heterozygous mutations in the flavoprotein gene of the respiratory chain complex II in a patient with Leigh syndrome.
        Hum Genet. 2000; 106: 236-243
        • Estus S.
        • Tucker H.M.
        • van Rooyen C.
        • Wright S.
        • Brigham E.F.
        • Wogulis M.
        • et al.
        Aggregated amyloid-beta protein induces cortical neuronal apoptosis and concomitant “apoptotic” pattern of gene induction.
        J Neurosci. 1997; 17: 7736-7745
        • Li Y.P.
        • Bushnell A.F.
        • Lee C.M.
        • Perlmutter L.S.
        • Wong S.K.
        Beta-amyloid induces apoptosis in human-derived neurotypic SH-SY5Y cells.
        Brain Res. 1996; 738: 196-204
        • Sorbi S.
        • Piacentini S.
        • Latorraca S.
        • Piersanti P.
        • Amaducci L.
        Alterations in metabolic properties in fibroblasts in Alzheimer disease.
        Alzheimer Dis Assoc Disord. 1995; 9: 73-77
        • Gibson G.E.
        • Park L.C.
        • Zhang H.
        • Sorbi S.
        • Calingasan N.Y.
        Oxidative stress and a key metabolic enzyme in Alzheimer brains, cultured cells, and an animal model of chronic oxidative deficits.
        Ann N Y Acad Sci. 1999; 893: 79-94
        • Hutchin T.
        • Cortopassi G.
        A mitochondrial DNA clone is associated with increased risk for Alzheimer disease.
        Proc Natl Acad Sci U S A. 1995; 92: 6892-6895
        • Wang J.
        • Xiong S.
        • Xie C.
        • Markesbery W.R.
        • Lovell M.A.
        Increased oxidative damage in nuclear and mitochondrial DNA in Alzheimer's disease.
        J Neurochem. 2005; 93: 953-962
        • Aliev G.
        • Gasimov E.
        • Obrenovich M.E.
        • Fischbach K.
        • Shenk J.C.
        • Smith M.A.
        • et al.
        Atherosclerotic lesions and mitochondria DNA deletions in brain microvessels: implication in the pathogenesis of Alzheimer's disease.
        Vasc Health Risk Manag. 2008; 4: 721-730
        • Corral-Debrinski M.
        • Horton T.
        • Lott M.T.
        • Shoffner J.M.
        • McKee A.C.
        • Beal M.F.
        • et al.
        Marked changes in mitochondrial DNA deletion levels in Alzheimer brains.
        Genomics. 1994; 23: 471-476
        • Coskun P.E.
        • Beal M.F.
        • Wallace D.C.
        Alzheimer's brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication.
        Proc Natl Acad Sci U S A. 2004; 101: 10726-10731
        • Maruszak A.
        • Canter J.A.
        • Styczyńska M.
        • Zekanowski C.
        • Barcikowska M.
        Mitochondrial haplogroup H and Alzheimer's disease – is there a connection?.
        Neurobiol Aging. 2009; 30: 1749-1755
        • der Walt JM Van
        • Dementieva Y.A.
        • Martin E.R.
        • Scott W.K.
        • Nicodemus K.K.
        • Kroner C.C.
        • et al.
        Analysis of European mitochondrial haplogroups with Alzheimer disease risk.
        Neurosci Lett. 2004; 365: 28-32
        • Carrieri G.
        • Bonafè M.
        • De Luca M.
        • Rose G.
        • Varcasia O.
        • Bruni A.
        • et al.
        Mitochondrial DNA haplogroups and APOE4 allele are non-independent variables in sporadic Alzheimer's disease.
        Hum Genet. 2001; 108: 194-198
        • Santoro A.
        • Balbi V.
        • Balducci E.
        • Pirazzini C.
        • Rosini F.
        • Tavano F.
        • et al.
        Evidence for sub-haplogroup h5 of mitochondrial DNA as a risk factor for late onset Alzheimer's disease.
        PLoS One. 2010; 5: e12037
        • Brown A.M.
        • Gordon D.
        • Lee H.
        • Wavrant-De Vrièze F.
        • Cellini E.
        • Bagnoli S.
        • et al.
        Testing for linkage and association across the dihydrolipoyl dehydrogenase gene region with Alzheimer's disease in three sample populations.
        Neurochem Res. 2007; 32: 857-869
        • Martin L.J.
        Biology of mitochondria in neurodegenerative diseases.
        Prog Mol Biol Transl Sci. 2012; 107: 355-415
        • Schapira A.H.
        Mitochondrial diseases.
        Lancet. 2012; 379: 1825-1834
        • Reddy P.H.
        • Reddy T.P.
        Mitochondria as a therapeutic target for aging and neurodegenerative diseases.
        Curr Alzheimer Res. 2011; 8: 393-409
        • Ries V.
        • Oertel W.H.
        • Höglinger G.U.
        Mitochondrial dysfunction as a therapeutic target in progressive supranuclear palsy.
        J Mol Neurosci. Nov 2011; 45 ([Epub 2011 Jul 27. Review]): 684-689
        • Yao J.
        • Chen S.
        • Mao Z.
        • Cadenas E.
        • Brinton R.D.
        2-Deoxy-D-glucose treatment induces ketogenesis, sustains mitochondrial function, and reduces pathology in female mouse model of Alzheimer's disease.
        PLoS One. 2011; 6: e21788
        • Liu D.
        • Pitta M.
        • Lee J.H.
        • Ray B.
        • Lahiri D.K.
        • Furukawa K.
        • et al.
        The KATP channel activator diazoxide ameliorates amyloid- β and tau pathologies and improves memory in the 3xTgAD mouse model of Alzheimer's disease.
        J Alzheimers Dis. 2010; 22: 443-457
        • Honea R.A.
        • Swerdlow R.H.
        • Vidoni E.D.
        • Burns J.M.
        Progressive regional atrophy in normal adults with a maternal history of Alzheimer disease.
        Neurology. 2011; 76: 822-829
        • Mosconi L.
        • Berti V.
        • Swerdlow R.H.
        • Pupi A.
        • Duara R.
        • de Leon M.
        Maternal transmission of Alzheimer's disease: prodromal metabolic phenotype and the search for genes.
        Hum Genomics. 2010; 4: 170-193
        • Mosconi L.
        • Glodzik L.
        • Mistur R.
        • McHugh P.
        • Rich K.E.
        • Javier E.
        • et al.
        Oxidative stress and amyloid-beta pathology in normal individuals with a maternal history of Alzheimer's.
        Biol Psychiatry. 2010; 68: 913-921
        • Mosconi L.
        • de Leon M.
        • Murray J.
        • E L
        • Lu J.
        • Javier E.
        • et al.
        Reduced mitochondria cytochrome oxidase activity in adult children of mothers with Alzheimer's disease.
        J Alzheimers Dis. 2011; 27: 483-490