Advertisement
Short communication| Volume 319, ISSUE 1-2, P147-151, August 15, 2012

Long-term neurotoxic effects of dimethylamine borane intoxication

      Abstract

      Objectives

      To investigate the long-term neurotoxic effects in a patient with acute dimethylamine borane (DMAB) intoxication.

      Patients

      A 38-year-old man, working in a semiconductor factory, with acute DMAB intoxication presented with confusion, and drowsiness, followed by cognitive impairments and motor-predominant axonal polyneuropathy.

      Investigations

      We performed serial neurobehavioral assessments and functional neuroimaging studies, including brain 99mTc-TRODAT single photon emission computed tomography (SPECT) and brain positron emission tomography (PET) scan to monitor the long-term central nervous system (CNS) effects of DMAB intoxication.

      Results

      Neurobehavioral tests revealed a persistent impairment in episodic memory of visual retention semantic category retrieval and working memory of digit span (backward). Brain 99mTc-TRODAT SPECT scan showed a lower radioactivity uptake in the left striatum and F-18 FDG PET scan revealed a relatively decreased cerebral metabolism at the anterior cingulate gyrus and both frontal regions. Follow-up neurobehavioral tests showed that the cognitive improvements were mainly documented in intelligence, attention function, conceptual shift, perceptual motor speed, verbal learning and working memory but were limited in visual memory and executive functions.

      Conclusion

      Patients with acute DMAB intoxication may have a long-lasting CNS toxicity on the cognitive dysfunction, parkinsonism, and an impaired metabolic activity of the brain. Clinical improvements may sustain during the long-term follow-up period.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Chemical information profile for dimethylamine borane
        National toxicology program (NTP) Web site.
        2008
        • Huang C.C.
        • Kuo H.C.
        Dimethylamine borane neurotoxicity.
        Environ Health Perspect. 2006; 114 ([author reply A]): A274
        • Kuo H.C.
        • Huang C.C.
        • Chu C.C.
        • Chu N.S.
        Axonal polyneuropathy after acute dimethylamine borane intoxication.
        Arch Neurol. 2006; 63: 1009-1012
        • Tsan Y.T.
        • Peng K.Y.
        • Hung D.Z.
        • Hu W.H.
        • Yang D.Y.
        Case report: the clinical toxicity of dimethylamine borane.
        Environ Health Perspect. 2005; 113: 1784-1786
        • Lin W.Y.
        • Lin K.J.
        • Weng Y.H.
        • Yen T.C.
        • Shen L.H.
        • Liao M.H.
        • et al.
        Preliminary studies of differential impairments of the dopaminergic system in subtypes of progressive supranuclear palsy.
        Nucl Med Commun. 2010; 31: 974-980
        • Weng Y.H.
        • Chou Y.H.
        • Wu W.S.
        • Lin K.J.
        • Chang H.C.
        • Yen T.C.
        • et al.
        PINK1 mutation in Taiwanese early-onset parkinsonism: clinical, genetic, and dopamine transporter studies.
        J Neurol. 2007; 254: 1347-1355
        • Piccini P.
        • Whone A.
        Functional brain imaging in the differential diagnosis of Parkinson's disease.
        Lancet Neurol. 2004; 3: 284-290
        • Swanson R.L.
        • Newberg A.B.
        • Acton P.D.
        • Siderowf A.
        • Wintering N.
        • Alavi A.
        • et al.
        Differences in [99mTc]TRODAT-1 SPECT binding to dopamine transporters in patients with multiple system atrophy and Parkinson's disease.
        Eur J Nucl Med Mol Imaging. 2005; 32: 302-307
        • Nobili F.
        • Arnaldi D.
        • Campus C.
        • Ferrara M.
        • De Carli F.
        • Brugnolo A.
        • et al.
        Brain perfusion correlates of cognitive and nigrostriatal functions in de novo Parkinson's disease.
        Eur J Nucl Med Mol Imaging. 2011; 38: 2209-2218
        • Nobili F.
        • Morbelli S.
        • Arnaldi D.
        • Ferrara M.
        • Campus C.
        • Brugnolo A.
        • et al.
        Radionuclide brain imaging correlates of cognitive impairment in Parkinson's disease (PD).
        J Neurol Sci. 2011; 310: 31-35
        • Lai S.C.
        • Weng Y.H.
        • Yen T.C.
        • Tsai C.C.
        • Chang H.C.
        • Wey S.P.
        • et al.
        Imaging early-stage corticobasal degeneration with [99mTc]TRODAT-1 SPET.
        Nucl Med Commun. 2004; 25: 339-345
        • Mahapatra R.K.
        • Edwards M.J.
        • Schott J.M.
        • Bhatia K.P.
        Corticobasal degeneration.
        Lancet Neurol. 2004; 3: 736-743
        • Weng Y.H.
        • Yen T.C.
        • Chen M.C.
        • Kao P.F.
        • Tzen K.Y.
        • Chen R.S.
        • et al.
        Sensitivity and specificity of 99mTc-TRODAT-1 SPECT imaging in differentiating patients with idiopathic Parkinson's disease from healthy subjects.
        J Nucl Med. 2004; 45: 393-401
        • Budson A.E.
        • Price B.H.
        Memory dysfunction.
        N Engl J Med. 2005; 352: 692-699
        • Neary D.
        • Snowden J.
        • Mann D.
        Frontotemporal dementia.
        Lancet Neurol. 2005; 4: 771-780
        • Skipper L.M.
        • Ross L.A.
        • Olson I.R.
        Sensory and semantic category subdivisions within the anterior temporal lobes.
        Neuropsychologia. 2011; 49: 3419-3429
        • Jeong Y.
        • Cho S.S.
        • Park J.M.
        • Kang S.J.
        • Lee J.S.
        • Kang E.
        • et al.
        18F-FDG PET findings in frontotemporal dementia: an SPM analysis of 29 patients.
        J Nucl Med. 2005; 46: 233-239
        • Roland P.E.
        • Gulyas B.
        Visual memory, visual imagery, and visual recognition of large field patterns by the human brain: functional anatomy by positron emission tomography.
        Cereb Cortex. 1995; 5: 79-93
        • Goldstein R.Z.
        • Leskovjan A.C.
        • Hoff A.L.
        • Hitzemann R.
        • Bashan F.
        • Khalsa S.S.
        • et al.
        Severity of neuropsychological impairment in cocaine and alcohol addiction: association with metabolism in the prefrontal cortex.
        Neuropsychologia. 2004; 42: 1447-1458
        • Markowitsch H.J.
        • Staniloiu A.
        Amnesic disorders.
        Lancet. Apr 12 2012; ([Epub])
        • Romo R.
        • de Lafuente V.
        Conversion of sensory signals into perceptual decisions.
        Prog Neurobiol. Mar 28 2012; ([Epub])
        • Etkin A.
        • Egner T.
        • Kalisch R.
        Emotional processing in anterior cingulate and medial prefrontal cortex.
        Trends Cogn Sci. 2011; 15: 85-93
        • Bonelli S.B.
        • Thompson P.J.
        • Yogarajah M.
        • Vollmar C.
        • Powell R.H.
        • Symms M.R.
        • et al.
        Imaging language networks before and after anterior temporal lobe resection: results of a longitudinal fMRI study.
        Epilepsia. 2012; 53: 639-650
        • Wong C.
        • Gallate J.
        The function of the anterior temporal lobe: a review of the empirical evidence.
        Brain Res. 2012; 1449: 94-116
        • Yabe I.
        • Tsuji-Akimoto S.
        • Shiga T.
        • Hamada S.
        • Hirata K.
        • Otsuki M.
        • et al.
        Writing errors in ALS related to loss of neuronal integrity in the anterior cingulate gyrus.
        J Neurol Sci. 2012; 315: 55-59