Advertisement
Research Article| Volume 319, ISSUE 1-2, P89-95, August 15, 2012

BoNT-A related changes of cortical activity in patients suffering from severe hand paralysis with arm spasticity following ischemic stroke

      Abstract

      Background

      Investigations were performed to localize and analyze the botulinum toxin (BoNT-A) related changes of cerebral cortex activation in chronic stroke patients suffering from severe hand paralysis with arm spasticity. Effects on task- related cerebral activation were evaluated by functional magnetic resonance imaging (fMRI).

      Methods

      14 patients (5 males, 9 females, mean age 55.3 years) suffering from upper limb post-stroke spasticity were investigated. The change of arm spasticity was assessed by using the modified Ashworth scale (MAS). FMRI sessions were performed before (W0), four weeks (W4) and 11 weeks (W11) after BoNT-A application. Patients were scanned while performing imaginary movement with the impaired hand. Group fMRI analysis included patient age as a covariate.

      Results

      BoNT-A treatment was effective in alleviation of arm spasticity. Mean MAS was at Week 0: 2.5 (SD 0.53), at Week 4: 1.45 (SD 0.38), at Week 11: 2.32 (SD 0.44).
      Task-related fMRI prior to the treatment showed extensive activation of bilateral frontoparietal sensorimotor cortical areas, anterior cingulate gyrus, pallidum, thalamus and cerebellum.
      Effective BoNT-A treatment (W4) resulted in partial reduction of active network volume in most of the observed areas, whereas BoNT-free data (W11) revealed further volume reduction in the sensorimotor network.
      On direct comparison, significant activation decreases associated with BoNT-A treatment were located in areas outside the classical sensorimotor system, namely, ipsilesional lateral occipital cortex, supramarginal gyrus and precuneus cortex. On comparison of W4 and W11, no activation increases were found, instead, activation further decreased in ipsilesional insular cortex, contralesional superior frontal gyrus and bilateral frontal pole.

      Conclusions

      Whole brain activation patterns during BoNT-A treatment of post-stroke arm spasticity and further follow up document predominantly gradual changes both within and outside the classical sensorimotor system.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mathers C.D.
        • Loncar D.
        Projection of global mortality and burden of disease from 2002 to 2030.
        PLoS Med. 2006; 3: e442
        • Jørgensen H.S.
        • Nakayama H.
        • Raaschou H.O.
        • Vive-Larsen J.
        • Støier M.
        • Olsen T.S.
        Outcome and time course of recovery in stroke. Part I: outcome. The Copenhagen Stroke Study.
        Arch Phys Med Rehabil. 1995; 76: 399-405
        • Colebatch J.G.
        • Gandevia S.C.
        The distribution of muscular weakness in upper motor neuron lesions affecting the arm.
        Brain. 1989; 112: 749-763
        • Kamper D.G.
        • Fischer H.C.
        • Cruz E.G.
        • Rymer W.Z.
        Weakness is the primary contributor to finger impairment in chronic stroke.
        Arch Phys Med Rehabil. 2006; 87: 1262-1269
        • Ada L.
        • O'Dwyer N.
        • O'Neill E.
        Relation between spasticity, weakness and contracture of the elbow flexors and upper limb activity after stroke: an observational study.
        Disabil Rehabil. 2006; 15–30: 891-897
        • Barnes M.P.
        Medical management of spasticity in stroke.
        Age Ageing. 2001; 30: 13-16
        • Watkins C.L.
        • Leathley M.J.
        • Gregson J.M.
        • Moore A.P.
        • Smith T.L.
        • Sharma A.K.
        Prevalence of spasticity post-stroke.
        Clin Rehabil. 2002; 16: 515-522
        • Ward A.B.
        • Aguilar M.
        • De Beyl Z.
        • Gedin S.
        • Kanovsky P.
        • Molteni F.
        • et al.
        Use of botulinum toxin type A in management of adult spasticity—a European consensus statement.
        J Rehabil Med. 2003; 35: 98-99
        • Hesse S.
        • Werner C.
        Post-stroke motor dysfunction and spasticity:novel pharmacological and physical treatment strategies.
        CNS Drugs. 2003; 17: 1093-1107
        • Dressler D.
        • Saberi F.A.
        • Barbosa E.R.
        Botulinum toxin: mechanisms of action.
        Arq Neuropsiquiatr. 2005; 63: 180-185
        • Rosales R.L.
        • Dressler D.
        On muscle spindles, dystonia and botulinum toxin.
        Eur J Neurol. 2010; 17: 71-80
        • Currà A.
        • Trompetto C.
        • Abbruzzese G.
        • Berardelli A.
        Central effects of botulinum toxin type A: evidence and supposition.
        Mov Disord. 2004; 19: S60-S64
        • Gilio F.
        • Currà A.
        • Lorenzano C.
        • Modugno N.
        • Manfredi M.
        • Berardelli A.
        Effects of botulinum toxin type A on intracortical inhibition in patients with dystonia.
        Ann Neurol. 2000; 48: 20-26
        • Kaňovsky P.
        • Bareš M.
        • Streitova H.
        • Klajblova H.
        • Pavel D.
        • Rektor I.
        The disorder of cortical excitability and cortical inhibition in focal dystonia is normalised following successful botulinum toxin treatment: an evidence from somatosensory evoked potentials and transcranial magnetic stimulation recordings.
        Neurology. 2005; 64: A381
        • Opavský R.
        • Hluštík P.
        • Otruba P.
        • Kaňovský P.
        Sensorimotor network in cervical dystonia and the effect of botulinum toxin treatment: a functional MRI study.
        J Neurol Sci. 2011; 306: 71-75
        • Opavský R.
        • Hluštík P.
        • Otruba P.
        • Kaňovský P.
        Somatosensory cortical activation in cervical dystonia and its modulation with botulinum toxin: an fMRI study.
        Int J Neurosci. 2012; 122: 45-52
        • Kaňovský P.
        • Rosales R.L.
        Debunking the pathophysiological puzzle of dystonia—with special reference to botulinum toxin therapy.
        Parkinsonism Relat Disord. 2011; 17: S11-S14
        • Johansen-Berg H.
        • Dawes H.
        • Guy C.
        • Smith S.M.
        • Wade D.T.
        • Matthews P.M.
        Correlation between motor improvements and altered fMRI activity after rehabilitative therapy.
        Brain. 2002; 125: 2731-2742
        • Manganotti P.
        • Acler M.
        • Formaggio E.
        • Avesani M.
        • Milanese F.
        • Baraldo A.
        • et al.
        Changes in cerebral activity after decreased upper-limb hypertonus: an EMG–fMRI study.
        Magn Reson Imaging. 2010; 28: 646-652
        • Diserens K.
        • Ruegg D.
        • Kleiser R.
        • Hyde S.
        • Perret N.
        • Vuadens P.
        • et al.
        Effect of repetitive arm cycling following botulinum toxin injection for poststroke spasticity: evidence from FMRI.
        Neurorehabil Neural Repair. 2010; 24: 753-762
        • Šenkárová Z.
        • Hluštík P.
        • Otruba P.
        • Herzig R.
        • Kaňovský P.
        Modulation of cortical activity in patients suffering from upper arm spasticity following stroke and treated with botulinum toxin A: an fMRI study.
        J Neuroimaging. 2010; 20: 9-15
        • Tomášová Z.
        • Hluštík P.
        • Král M.
        • Otruba P.
        • Herzig R.
        • Krobot A.
        • Kaňovský P.
        Cortical activation changes in patients suffering from post-stroke arm spasticity and treated with botulinum toxin A.
        J Neuroimaging. 2012; (in print)
        • Bohannon R.W.
        • Smith M.B.
        Interrater reliability of a modified Ashworth scale of muscle spasticity.
        Phys Ther. 1986; 67: 206-207
        • Paternostro-Sluga T.
        • Grim-Stieger M.
        • Posch M.
        • Schuhfried O.
        • Vacariu G.
        • Mittermaier C.
        • et al.
        Reliability and validity of the Medical Research Council (MRC) scale and a modified scale for testing muscle strength in patients with radial palsy.
        J Rehabil Med. 2008; 40: 665-671
        • Folstein M.F.
        • Folstein S.E.
        • McHugh P.R.
        “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician.
        J Psychiatr Res. 1975; 12: 189-198
        • Zung W.W.
        A Self-Rating Depression Scale.
        Arch Gen Psychiatry. 1965; 12: 63-70
        • Brott T.
        • Adams Jr., H.P.
        • Olinger C.P.
        • Marler J.R.
        • Barsan W.G.
        • Biller J.
        • et al.
        Measurements of acute cerebral infarction: a clinical examination scale.
        Stroke. 1989; 20: 864-870
        • Mahoney F.I.
        • Barthel D.W.
        Functional evaluation: the Barthel Index.
        Md State Med J. 1965; 14: 61-85
        • Quinn T.J.
        • Dawson J.
        • Walters M.R.
        • Lees K.R.
        Variability in modified Rankin scoring across a large cohort of international observers.
        Stroke. 2008; 39: 2975-2979
        • Roth M.
        • Decety J.
        • Raybaudi M.
        • Massarelli R.
        • Delon-Martin C.
        • Segebarth C.
        • et al.
        Possible involvement of primary motor cortex in mentally simulated movement: a functional magnetic resonance imaging study.
        Neuroreport. 1996; 7: 1280-1284
        • Roland P.E.
        • Larsen B.
        • Lassen N.E.
        • Skinhøj E.
        Supplementary motor area and other cortical areas in organisation of voluntary movements in man.
        J Neurophysiol. 1980; 43: 118-136
        • Solodkin A.
        • Hlustik P.
        • Chen E.E.
        • Small S.L.
        Fine modulation in network activation during motor execution and motor imagery.
        Cereb Cortex. 2004; 14: 1246-1255
        • Krobot A.
        • Schusterová B.
        • Tomsová J.
        • Kristková V.
        • Konečný P.
        Specific protocol of physiotherapy in stroke patients (in Czech).
        Cesk Slov Neurol Neurochir. 2008; 71/104: V74
        • Ward N.S.
        • Brown M.M.
        • Thompson A.J.
        • Frackowiak R.S.
        Neural correlates of outcome after stroke: a cross-sectional fMRI study.
        Brain. 2003; 126: 1430-1448
        • Jenkinson M.
        • Bannister P.
        • Brady M.
        • Smith S.
        Improved optimization for the robust and accurate linear registration and motion correction of brain images.
        Neuroimage. 2002; 17: 825-841
        • Smith S.M.
        Fast robust automated brain extraction.
        Hum Brain Mapp. 2002; 17: 143-155
        • Woolrich M.W.
        • Ripley B.D.
        • Brady M.
        • Smith S.M.
        Temporal autocorrelation in univariate linear modeling of FMRI data.
        Neuroimage. 2001; 14: 1370-1386
        • Jenkinson M.
        • Smith S.
        A global optimisation method for robust affine registration of brain images.
        Med Image Anal. 2001; 5: 143-156
        • Beckmann C.F.
        • Jenkinson M.
        • Smith S.M.
        General multilevel linear modeling for group analysis in FMRI.
        Neuroimage. 2003; 20: 1052-1063
        • Woolrich M.W.
        • Behrens T.E.
        • Beckmann C.F.
        • Jenkinson M.
        • Smith S.M.
        Multilevel linear modelling for FMRI group analysis using Bayesian inference.
        Neuroimage. 2004; 21: 1732-1747
        • Worsley K.J.
        Statistical analysis of activation images.
        in: Jezzard P. Matthews P.M. Smith S.M. Functional MRI: an introduction to methods. Oxford University Press, Oxford2001: 251-270
        • Calautti C.
        • Leroy F.
        • Guincestre J.Y.
        • Marié R.M.
        • Baron J.C.
        • Calautti C.
        • et al.
        Sequential activation brain mapping after subcortical stroke: changes in hemispheric balance and recovery.
        Neuroreport. 2001; 12: 3883-3886
        • Feydy A.
        • Carlier R.
        • Roby-Brami A.
        • Bussel B.
        • Cazalis F.
        • Pierot L.
        • et al.
        Longitudinal study of motor recovery after stroke: recruitment and focusing of brain activation.
        Stroke. 2002; 33: 1610-1617
        • Marshall R.S.
        • Perera G.M.
        • Lazar R.M.
        • Krakauer J.W.
        • Constantine R.C.
        • DeLaPaz R.L.
        Evolution of cortical activation during recovery from corticospinal tract infarction.
        Stroke. 2000; 31: 656-661
        • Traversa R.
        • Cicinelli P.
        • Oliveri M.
        • Giuseppina Palmieri M.
        • Filippi M.M.
        • Pasqualetti P.
        • et al.
        Neurophysiological followup of motor cortical output in stroke patients.
        Clin Neurophysiol. 2000; 111: 1695-1703
        • Small S.L.
        • Hlustik P.
        • Noll D.C.
        • Genovese C.
        • Solodkin A.
        Cerebellar hemispheric activation ipsilateral to the paretic hand correlates with functional recovery after stroke.
        Brain. 2002; 125: 1544-1557
        • Grill-Spector K.
        • Kourtzi Z.
        • Kanwisher N.
        The lateral occipital complex and its role in object recognition.
        Vision Res. 2001; 41: 1409-1422
        • Grefkes C.
        • Fink G.R.J.
        The functional organization of the intraparietal sulcus in humans and monkeys.
        Anatomy. 2005; 207: 3-17
        • Cavanna A.E.
        • Trimble M.R.
        The precuneus: a review of its functional anatomy and behavioural correlates.
        Brain. 2006; 129: 564-583
        • Milton J.
        • Solodkin A.
        • Hlustík P.
        • Small S.L.
        The mind of expert motor performance is cool and focused.
        Neuroimage. 2007; 35: 804-813
        • Nagai M.
        • Kishi K.
        • Kato S.
        Insular cortex and neuropsychiatric disorders: a review of recent literature.
        Eur Psychiatry. 2007; 22: 387-394
        • Weiller C.
        • Ramsay S.C.
        • Wise R.J.
        • Friston K.J.
        • Frackowiak R.S.
        Individual patterns of functional reorganization in the human cerebral cortex after capsular infarction.
        Ann Neurol. 1993; 33: 181-189
        • Nachev P.
        • Kennard C.
        • Husain M.
        Functional role of the supplementary and pre-supplementary motor areas.
        Nat Rev Neurosci. 2008; 9: 856-869
        • Tsujimoto S.
        • Genovesio A.
        • Wise S.P.
        Frontal pole cortex: encoding ends at the end of the endbrain.
        Trends Cogn Sci. 2011; 15: 169-176
        • Simpson D.M.
        • Gracies J.M.
        • Graham H.K.
        • Miyasaki J.M.
        • Naumann M.
        • Russman B.
        • et al.
        Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Assessment: botulinum neurotoxin for the treatment of spasticity (an evidence-based review): report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology.
        Neurology. 2008; 70: 1691-1698