Advertisement

Autoimmune disease in the brain – how to spot the culprits and how to keep them in check

  • Alexander Flügel
    Correspondence
    Corresponding author. Alexander Flüugel, M.D. Institute for Multiple Sclerosis Research, Department of Neuroimmunology, University of Göttingen, Waldweg 33, 37073 Göttingen, Germany. Tel.: +49 551 39 13332; fax: +49 551 39 13348
    Affiliations
    Institute for Multiple Sclerosis Research, Department of Neuroimmunology, Gemeinnützige Hertie-Stiftung and University Medical Centre Göttingen, Göttingen, Germany
    Search for articles by this author
  • Christian Schläger
    Affiliations
    Institute for Multiple Sclerosis Research, Department of Neuroimmunology, Gemeinnützige Hertie-Stiftung and University Medical Centre Göttingen, Göttingen, Germany
    Search for articles by this author
  • Fred Lühder
    Affiliations
    Institute for Multiple Sclerosis Research, Department of Neuroimmunology, Gemeinnützige Hertie-Stiftung and University Medical Centre Göttingen, Göttingen, Germany
    Search for articles by this author
  • Francesca Odoardi
    Affiliations
    Institute for Multiple Sclerosis Research, Department of Neuroimmunology, Gemeinnützige Hertie-Stiftung and University Medical Centre Göttingen, Göttingen, Germany
    Search for articles by this author
      This paper is only available as a PDF. To read, Please Download here.

      Summary

      Current concepts attribute an early and central role for auto-aggressive, myelin-specific T-lymphocytes in the pathogenesis of multiple sclerosis. This view emerged from immunological and pathological findings in experimental autoimmune encephalitis, an animal model characterised by pathological lesions closely resembling the ones found in multiple sclerosis. Furthermore, therapeutic strategies targeting the functions of these encephalitogenic T cells which attenuate their pathogenicity such as glatiramer acetate or anti-VLA4 antibody treatments represent proven approaches in multiple sclerosis. Nonetheless, all therapies evaluated to date either insufficiently dampen down inflammation or completely block immune processes. For this reason, there is a need to identify new therapeutic targets. We have employed live intravital two-photon microscopy to learn more about the behaviour of T cells during the preclinical phase of EAE, when T cells acquire the properties required to invade their target organ. Furthermore, we were able to identify an unexpected locomotive behaviour of T cells at the blood–brain barrier, which occurs immediately before diapedesis and the induction of paralytic disease. Such studies might open new avenues for the treatment of CNS autoimmune diseases.
      Multiple sclerosis is considered to be an autoimmune disease in which self-reactive T cells enter the central nervous system (CNS) and create an inflammatory milieu that destroys myelin and neurons. Immunomodulatory strategies for the treatment of multiple sclerosis target this process by attempting to inactivate these auto-aggressive T cells. However, so far, these strategies have failed to extinguish disease activity completely. For this reason, there is a need to understand in more detail the mechanisms by which T cells become encephalitogenic, how they enter the nervous system, and what the signals are that guide them along this path. If these processes could be better understood, it may be possible to design more effective and specific therapies for multiple sclerosis. This article will give a brief overview about our recent findings obtained using intravital imaging of autoaggressive effector T cells in an experimental model of multiple sclerosis. This new technological approach might help to fill some gaps in the understanding of autoimmune pathogenesis of multiple sclerosis.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Fox K
        • Caterson B
        Freeing the brain from the perineuronal net.
        Science. 2002; 298: 1187-1189
        • Edgar JM
        • Nave KA
        The role of CNS glia in preserving axon function.
        Curr Opin Neurobiol. 2009; 19: 498-504
        • Sofroniew MV
        • Vinters HV
        Astrocytes: biology and pathology.
        Acta Neuropathol. 2010; 119: 7-35
        • Graeber MB
        Changing face of microglia.
        Science. 2010; 330: 783-788
        • Matyash V
        • Kettenmann H
        Heterogeneity in astrocyte morphology and physiology.
        Brain Res Rev. 2010; 63: 2-10
        • Yuste R
        • Bonhoeffer T
        Morphological changes in dendritic spines associated with long-term synaptic plasticity.
        Annu Rev Neurosci. 2001; 24: 1071-1089
        • Kernie SG
        • Parent JM
        Forebrain neurogenesis after focal ischemic and traumatic brain injury.
        Neurobiol Dis. 2010; 37: 267-274
        • Grakoui A
        • Bromley SK
        • Sumen C
        • Davis MM
        • Shaw AS
        • Allen PM
        • et al.
        The immunological synapse: a molecular machine controlling T cell activation.
        Science. 1999; 285: 221-227
        • Friedl P
        • den Boer AT
        • Gunzer M
        Tuning immune responses: diversity and adaptation of the immunological synapse.
        Nat Rev Immunol. 2005; 5: 532-545
        • Kyewski B
        • Klein L
        A central role for central tolerance.
        Annu Rev Immunol. 2006; 24: 571-606
        • Mueller DL
        Mechanisms maintaining peripheral tolerance.
        Nat Immunol. 2010; 11: 21-27
        • Abbott NJ
        • Patabendige AA
        • Dolman DE
        • Yusof SR
        • Begley DJ
        Structure and function of the blood–brain barrier.
        Neurobiol Dis. 2010 Jan; 37: 13-25
        • Hickey WF
        • Hsu BL
        • Kimura H
        T-lymphocyte entry into the central nervous system.
        J Neurosci Res. 1991; 28: 254-260
        • Wekerle H
        • Linington C
        • Lassmann H
        • Meyermann R
        Cellular immune reactivity within the CNS.
        Trends Neurosci. 1986; 9: 271-277
        • Cserr HF
        • Harling-Berg CJ
        • Knopf PM
        Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance.
        Brain Pathol. 1992; 2: 269-276
        • Nimmerjahn A
        • Kirchhoff F
        • Helmchen F
        Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo.
        Science. 2005; 308: 1314-1318
        • Davalos D
        • Grutzendler J
        • Yang G
        • Kim JV
        • Zuo Y
        • Jung S
        • et al.
        ATP mediates rapid microglial response to local brain injury in vivo.
        Nat Neurosci. 2005; 8: 752-758
        • Bartholomaus I
        • Kawakami N
        • Odoardi F
        • Schlager C
        • Miljkovic D
        • Ellwart JW
        • et al.
        Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions.
        Nature. 2009; 462: 94-98
        • McMahon EJ
        • Bailey SL
        • Castenada CV
        • Waldner H
        • Miller SD
        Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis.
        Nat Med. 2005; 11: 335-339
        • Martin R
        • Jaraquemada D
        • Flerlage M
        • Richert J
        • Whitaker J
        • Long EO
        • et al.
        Fine specificity and HLA restriction of myelin basic protein-specific cytotoxic T cell lines from multiple sclerosis patients and healthy individuals.
        J Immunol. 1990; 145: 540-548
        • Fugger L
        Human autoimmunity genes in mice.
        Curr Opin Immunol. 2000; 12: 698-703
        • Fugger L
        • Friese MA
        • Bell JI
        From genes to function: the next challenge to understanding multiple sclerosis.
        Nat Rev Immunol. 2009; 9: 408-417
        • Ebers GC
        • Dyment DA
        Genetics of multiple sclerosis.
        Semin Neurol. 1998; 18: 295-299
        • Haines JL
        • Terwedow HA
        • Burgess K
        • Pericak-Vance MA
        • Rimmler JB
        • Martin ER
        • et al.
        Linkage of the MHC to familial multiple sclerosis suggests genetic heterogeneity. The Multiple Sclerosis Genetics Group.
        Hum Mol Genet. 1998; 7: 1229-1234
        • Cohen JA
        The future of multiple sclerosis treatment.
        J Neurol Sci. 2009; 277: S55-S61
        • Olson JK
        • Croxford JL
        • Miller SD
        Virus-induced autoimmunity: potential role of viruses in initiation, perpetuation, and progression of T-cell-mediated autoimmune disease.
        Viral Immunol. 2001; 14: 227-250
        • Sospedra M
        • Martin R
        Molecular mimicry in multiple sclerosis.
        Autoimmunity. 2006; 39: 3-8
        • Padovan E
        • Casorati G
        • Dellabona P
        • Meyer S
        • Brockhaus M
        • Lanzavecchia A
        Expression of two T cell receptor alpha chains: dual receptor T cells.
        Science. 1993; 262: 422-424
        • Bernard CC
        • Johns TG
        • Slavin A
        • Ichikawa M
        • Ewing C
        • Liu J
        • et al.
        Myelin oligodendrocyte glycoprotein: a novel candidate autoantigen in multiple sclerosis.
        J Mol Med. 1997; 75: 77-88
        • Mendel I
        • Kerlero de Rosbo N
        • Ben-Nun A
        A myelin oligodendrocyte glycoprotein peptide induces typical chronic experimental autoimmune encephalomyelitis in H-2b mice: fine specificity and T cell receptor V beta expression of encephalitogenic T cells.
        Eur J Immunol. 1995; 25: 1951-1959
        • Ben-Nun A
        • Wekerle H
        • Cohen IR
        The rapid isolation of clonable antigen-specific T lymphocyte lines capable of mediating autoimmune encephalomyelitis.
        Eur J Immunol. 1981; 11: 195-199
        • Huitinga I
        • van Rooijen N
        • de Groot CJ
        • Uitdehaag BM
        • Dijkstra CD
        Suppression of experimental allergic encephalomyelitis in Lewis rats after elimination of macrophages.
        J Exp Med. 1990; 172: 1025-1033
        • Pollinger B
        • Krishnamoorthy G
        • Berer K
        • Lassmann H
        • Bosl MR
        • Dunn R
        • et al.
        Spontaneous relapsing–remitting EAE in the SJL/J mouse: MOG-reactive transgenic T cells recruit endogenous MOG-specific B cells.
        J Exp Med. 2009; 206: 1303-1316
        • Skundric DS
        • Zakarian V
        • Dai R
        • Lisak RP
        • Tse HY
        • James J
        Distinct immune regulation of the response to H-2b restricted epitope of MOG causes relapsing–remitting EAE in H-2b/s mice.
        J Neuroimmunol. 2003; 136: 34-45
        • Zhang B
        • Yamamura T
        • Kondo T
        • Fujiwara M
        • Tabira T
        Regulation of experimental autoimmune encephalomyelitis by natural killer (NK) cells.
        J Exp Med. 1997; 186: 1677-1687
        • Kerlero de Rosbo N
        • Mendel I
        • Ben-Nun A
        Chronic relapsing experimental autoimmune encephalomyelitis with a delayed onset and an atypical clinical course, induced in PL/J mice by myelin oligodendrocyte glycoprotein (MOG)-derived peptide: preliminary analysis of MOG T cell epitopes.
        Eur J Immunol. 1995; 25: 985-993
        • Papadopoulos D
        • Pham-Dinh D
        • Reynolds R
        Axon loss is responsible for chronic neurological deficit following inflammatory demyelination in the rat.
        Exp Neurol. 2006; 197: 373-385
        • Stefferl A
        • Schubart A
        • Storch M
        • Amini A
        • Mather I
        • Lassmann H
        • et al.
        Butyrophilin, a milk protein, modulates the encephalitogenic T cell response to myelin oligodendrocyte glycoprotein in experimental autoimmune encephalomyelitis.
        J Immunol. 2000; 165: 2859-2865
        • Storch MK
        • Stefferl A
        • Brehm U
        • Weissert R
        • Wallstrom E
        • Kerschensteiner M
        • et al.
        Autoimmunity to myelin oligodendrocyte glycoprotein in rats mimics the spectrum of multiple sclerosis pathology.
        Brain Pathol. 1998; 8: 681-694
        • Medana I
        • Martinic MA
        • Wekerle H
        • Neumann H
        Transection of major histocompatibility complex class I-induced neurites by cytotoxic T lymphocytes.
        Am J Pathol. 2001; 159: 809-815
        • Wensky AK
        • Furtado GC
        • Marcondes MC
        • Chen S
        • Manfra D
        • Lira SA
        • et al.
        IFN-gamma determines distinct clinical outcomes in autoimmune encephalomyelitis.
        J Immunol. 2005; 174: 1416-1423
        • Kojima K
        • Berger T
        • Lassmann H
        • Hinze-Selch D
        • Zhang Y
        • Gehrmann J
        • et al.
        Experimental autoimmune panencephalitis and uveoretinitis transferred to the Lewis rat by T lymphocytes specific for the S100 beta molecule, a calcium binding protein of astroglia.
        J Exp Med. 1994; 180: 817-829
        • t Hart BA
        • Bauer J
        • Brok HP
        • Amor S
        Non-human primate models of experimental autoimmune encephalomyelitis: Variations on a theme.
        J Neuroimmunol. 2005; 168: 1-12
        • Iglesias A
        • Bauer J
        • Litzenburger T
        • Schubart A
        • Linington C
        T- and B-cell responses to myelin oligodendrocyte glycoprotein in experimental autoimmune encephalomyelitis and multiple sclerosis.
        Glia. 2001; 36: 220-234
        • Sun D
        • Qin Y
        • Chluba J
        • Epplen JT
        • Wekerle H
        Suppression of experimentally induced autoimmune encephalomyelitis by cytolytic T-T cell interactions.
        Nature. 1988; 332: 843-845
        • t Hart BA
        • Bauer J
        • Muller HJ
        • Melchers B
        • Nicolay K
        • Brok H
        • et al.
        Histopathological characterization of magnetic resonance imaging-detectable brain white matter lesions in a primate model of multiple sclerosis: a correlative study in the experimental autoimmune encephalomyelitis model in common marmosets (Callithrix jacchus)..
        Am J Pathol. 1998; 153: 649-663
        • Genain CP
        • Hauser SL
        Experimental allergic encephalomyelitis in the New World monkey Callithrix jacchus..
        Immunol Rev. 2001; 183: 159-172
        • Shao H
        • Huang Z
        • Sun SL
        • Kaplan HJ
        • Sun D
        Myelin/oligodendrocyte glycoprotein-specific T-cells induce severe optic neuritis in the C57BL/6 mouse.
        Invest Ophthalmol Vis Sci. 2004; 45: 4060-4065
        • Abdul-Majid KB
        • Wefer J
        • Stadelmann C
        • Stefferl A
        • Lassmann H
        • Olsson T
        • et al.
        Comparing the pathogenesis of experimental autoimmune encephalomyelitis in CD4–/– and CD8–/– DBA/1 mice defines qualitative roles of different T cell subsets.
        J Neuroimmunol. 2003; 141: 10-19
        • Hu D
        • Ikizawa K
        • Lu L
        • Sanchirico ME
        • Shinohara ML
        • Cantor H
        Analysis of regulatory CD8 T cells in Qa-1-deficient mice.
        Nat Immunol. 2004; 5: 516-523
        • Koh DR
        • Fung-Leung WP
        • Ho A
        • Gray D
        • Acha-Orbea H
        • Mak TW
        Less mortality but more relapses in experimental allergic encephalomyelitis in CD8–/– mice.
        Science. 1992; 256: 1210-1213
        • Najafian N
        • Chitnis T
        • Salama AD
        • Zhu B
        • Benou C
        • Yuan X
        • et al.
        Regulatory functions of CD8+CD28– T cells in an autoimmune disease model.
        J Clin Invest. 2003; 112: 1037-1048
        • Kerlero de Rosbo N
        • Kaye JF
        • Eisenstein M
        • Mendel I
        • Hoeftberger R
        • Lassmann H
        • et al.
        The myelin-associated oligodendrocytic basic protein region MOBP15–36 encompasses the immunodominant major encephalitogenic epitope(s) for SJL/J mice and predicted epitope(s) for multiple sclerosis-associated HLA-DRB1*1501.
        J Immunol. 2004; 173: 1426-1435
        • Bettelli E
        • Pagany M
        • Weiner HL
        • Linington C
        • Sobel RA
        • Kuchroo VK
        Myelin oligodendrocyte glycoprotein-specific T cell receptor transgenic mice develop spontaneous autoimmune optic neuritis.
        J Exp Med. 2003; 197: 1073-1081
        • Krishnamoorthy G
        • Lassmann H
        • Wekerle H
        • Holz A
        Spontaneous opticospinal encephalomyelitis in a double-transgenic mouse model of autoimmune T cell/B cell cooperation.
        J Clin Invest. 2006; 116: 2385-2392
        • Waldner H
        • Whitters MJ
        • Sobel RA
        • Collins M
        • Kuchroo VK
        Fulminant spontaneous autoimmunity of the central nervous system in mice transgenic for the myelin proteolipid protein-specific T cell receptor.
        Proc Natl Acad Sci U S A. 2000; 97: 3412-3417
        • Ellmerich S
        • Mycko M
        • Takacs K
        • Waldner H
        • Wahid FN
        • Boyton RJ
        • et al.
        High incidence of spontaneous disease in an HLA-DR15 and TCR transgenic multiple sclerosis model.
        J Immunol. 2005; 174: 1938-1946
        • Goverman J
        • Woods A
        • Larson L
        • Weiner LP
        • Hood L
        • Zaller DM
        Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity.
        Cell. 1993; 72: 551-560
        • Bennett JL
        • Lam C
        • Kalluri SR
        • Saikali P
        • Bautista K
        • Dupree C
        • et al.
        Intrathecal pathogenic anti-aquaporin-4 antibodies in early neuromyelitis optica.
        Ann Neurol. 2009; 66: 617-629
        • Gold R
        • Linington C
        • Lassmann H
        Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research.
        Brain. 2006; 129: 1953-1971
        • Mancardi G
        • Hart B
        • Roccatagliata L
        • Brok H
        • Giunti D
        • Bontrop R
        • et al.
        Demyelination and axonal damage in a non-human primate model of multiple sclerosis.
        J Neurol Sci. 2001; 184: 41-49
        • Linington C
        • Bradl M
        • Lassmann H
        • Brunner C
        • Vass K
        Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein.
        Am J Pathol. 1988; 130: 443-454
        • Litzenburger T
        • Fassler R
        • Bauer J
        • Lassmann H
        • Linington C
        • Wekerle H
        • et al.
        B lymphocytes producing demyelinating autoantibodies: development and function in gene-targeted transgenic mice.
        J Exp Med. 1998; 188: 169-180
        • Mathey EK
        • Derfuss T
        • Storch MK
        • Williams KR
        • Hales K
        • Woolley DR
        • et al.
        Neurofascin as a novel target for autoantibody-mediated axonal injury.
        J Exp Med. 2007; 204: 2363-2372
        • Bradl M
        • Misu T
        • Takahashi T
        • Watanabe M
        • Mader S
        • Reindl M
        • et al.
        Neuromyelitis optica: pathogenicity of patient immunoglobulin in vivo.
        Ann Neurol. 2009; 66: 630-643
        • Brabb T
        • Goldrath AW
        • von Dassow P
        • Paez A
        • Liggitt HD
        • Goverman J
        Triggers of autoimmune disease in a murine TCR-transgenic model for multiple sclerosis.
        J Immunol. 1997; 159: 497-507
        • Lafaille JJ
        • Nagashima K
        • Katsuki M
        • Tonegawa S
        High incidence of spontaneous autoimmune encephalomyelitis in immunodeficient anti-myelin basic protein T cell receptor transgenic mice.
        Cell. 1994; 78: 399-408
        • Pomeroy IM
        • Matthews PM
        • Frank JA
        • Jordan EK
        • Esiri MM
        Demyelinated neocortical lesions in marmoset autoimmune encephalomyelitis mimic those in multiple sclerosis.
        Brain. 2005; 128: 2713-2721
        • Storch MK
        • Bauer J
        • Linington C
        • Olsson T
        • Weissert R
        • Lassmann H
        Cortical demyelination can be modeled in specific rat models of autoimmune encephalomyelitis and is major histocompatibility complex (MHC) haplotype-related.
        J Neuropathol Exp Neurol. 2006; 65: 1137-1142
        • Merkler D
        • Ernsting T
        • Kerschensteiner M
        • Bruck W
        • Stadelmann C
        A new focal EAE model of cortical demyelination: multiple sclerosis-like lesions with rapid resolution of inflammation and extensive remyelination.
        Brain. 2006; 129: 1972-1983
        • Phillips MJ
        • Weller RO
        • Kida S
        • Iannotti F
        Focal brain damage enhances experimental allergic encephalomyelitis in brain and spinal cord.
        Neuropathol Appl Neurobiol. 1995; 21: 189-200
        • Sun D
        • Newman TA
        • Perry VH
        • Weller RO
        Cytokine-induced enhancement of autoimmune inflammation in the brain and spinal cord: implications for multiple sclerosis.
        Neuropathol Appl Neurobiol. 2004; 30: 374-384
        • Hobom M
        • Storch MK
        • Weissert R
        • Maier K
        • Radhakrishnan A
        • Kramer B
        • et al.
        Mechanisms and time course of neuronal degeneration in experimental autoimmune encephalomyelitis.
        Brain Pathol. 2004 Apr; 14: 148-157
        • Lev N
        • Barhum Y
        • Melamed E
        • Offen D
        Bax-ablation attenuates experimental autoimmune encephalomyelitis in mice.
        Neurosci Lett. 2004; 359: 139-142
        • Linker RA
        • Maurer M
        • Gaupp S
        • Martini R
        • Holtmann B
        • Giess R
        • et al.
        CNTF is a major protective factor in demyelinating CNS disease: a neurotrophic cytokine as modulator in neuroinflammation.
        Nat Med. 2002; 8: 620-624
        • Offen D
        • Kaye JF
        • Bernard O
        • Merims D
        • Coire CI
        • Panet H
        • et al.
        Mice overexpressing Bcl-2 in their neurons are resistant to myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE).
        J Mol Neurosci. 2000; 15: 167-176
        • Kassmann CM
        • Lappe-Siefke C
        • Baes M
        • Brugger B
        • Mildner A
        • Werner HB
        • et al.
        Axonal loss and neuroinflammation caused by peroxisome-deficient oligodendrocytes.
        Nat Genet. 2007; 39: 969-976
        • Flügel A
        • Willem M
        • Berkowicz T
        • Wekerle H
        Gene transfer into CD4+ T lymphocytes: green fluorescent protein-engineered, encephalitogenic T cells illuminate brain autoimmune responses.
        Nat Med. 1999; 5: 843-847
        • Zipfel WR
        • Williams RM
        • Webb WW
        Nonlinear magic: multiphoton microscopy in the biosciences.
        Nat Biotechnol. 2003; 21: 1369-1377
        • Helmchen F
        • Denk W
        Deep tissue two-photon microscopy.
        Nat Methods. 2005; 2: 932-940
        • Denk W
        • Svoboda K
        Photon upmanship: why multiphoton imaging is more than a gimmick.
        Neuron. 1997; 18: 351-357
        • Flügel A
        • Odoardi F
        • Nosov M
        • Kawakami N
        Autoaggressive effector T cells in the course of experimental autoimmune encephalomyelitis visualized in the light of two-photon microscopy.
        J Neuroimmunol. 2007; 191: 86-97
        • Flügel A
        • Berkowicz T
        • Ritter T
        • Labeur M
        • Jenne DE
        • Li Z
        • et al.
        Migratory activity and functional changes of green fluorescent effector cells before and during experimental autoimmune encephalomyelitis.
        Immunity. 2001; 14: 547-560
        • Odoardi F
        • Kawakami N
        • Li Z
        • Cordiglieri C
        • Streyl K
        • Nosov M
        • et al.
        Instant effect of soluble antigen on effector T cells in peripheral immune organs during immunotherapy of autoimmune encephalomyelitis.
        Proc Natl Acad Sci U S A. 2007; 104: 920-925
        • Kawakami N
        • Flügel A
        Knocking at the brain's door: intravital two-photon imaging of autoreactive T cell interactions with CNS structures.
        Semin Immunopathol. 2010; 32: 275-287
        • Kawakami N
        • Nägerl UV
        • Odoardi F
        • Bonhoeffer T
        • Wekerle H
        • Flügel A
        Live imaging of effector cell trafficking and autoantigen recognition within the unfolding autoimmune encephalomyelitis lesion.
        J Exp Med. 2005; 201: 1805-1814
        • Odoardi F
        • Kawakami N
        • Klinkert WE
        • Wekerle H
        • Flügel A
        Blood-borne soluble protein antigen intensifies T cell activation in autoimmune CNS lesions and exacerbates clinical disease.
        Proc Natl Acad Sci U S A. 2007; 104: 18625-18630
        • Dhib-Jalbut S
        • Marks S
        Interferon-beta mechanisms of action in multiple sclerosis.
        Neurology. 2010; 74: S17-S24
        • Ziemssen T
        • Schrempf W
        Glatiramer acetate: mechanisms of action in multiple sclerosis.
        Int Rev Neurobiol. 2007; 79: 537-570
        • Vollmer T
        • Stewart T
        • Baxter N
        Mitoxantrone and cytotoxic drugs' mechanisms of action.
        Neurology. 2005; 74: S41-S46
        • Chun J
        • Hartung HP
        Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis.
        Clin Neuropharmacol. 2010; 33: 91-101
        • Engelhardt B
        • Kappos L
        Natalizumab: targeting alpha4-integrins in multiple sclerosis.
        Neurodegener Dis. 2008; 5: 16-22
        • Tselis A
        Laquinimod, a new oral autoimmune modulator for the treatment of relapsing–remitting multiple sclerosis.
        Curr Opin Investig Drugs. 2010; 11: 577-585
        • Linker RA
        • Lee DH
        • Stangel M
        • Gold R
        Fumarates for the treatment of multiple sclerosis: potential mechanisms of action and clinical studies.
        Expert Rev Neurother. 2008; 8: 1683-1690