Advertisement
Review Article| Volume 312, ISSUE 1-2, P1-6, January 15, 2012

Download started.

Ok

Enhancing intrinsic growth capacity promotes adult CNS regeneration

Published:September 19, 2011DOI:https://doi.org/10.1016/j.jns.2011.08.037

      Abstract

      In the adult mammalian central nervous system (CNS), the axons do not spontaneously regenerate after injury due to the inhibitory extrinsic environment and a diminished intrinsic regenerative capability. Many previous studies focus largely on characterizing the hostile growth inhibitory molecules in the CNS. In fact, blocking such inhibitory activities by either genetic or pharmacological approaches only allows limited sprouting, and majority of the adult neurons fail to regenerate their axons even provided with permissive substrates. Upon the neural circuits established during development, the intrinsic neuronal growth activity is gradually repressed. Little is known to the mechanisms for transition from the robust growth mode of the immature neurons to the poor growth mode of the mature neurons and the way to reactivate the intrinsic growth capacity after injury. The primary sensory neurons with cell bodies in the dorsal root ganglion (DRG) provide a useful model to develop strategies to enhance the intrinsic growth capacity of neurons. The centrally projecting axons in the adult spinal cord do not regenerate, while the peripheral branches regenerate robustly after injury. Regeneration of the central branches can be significantly enhanced after a prior peripheral branch injury, which is defined as conditioning lesion. We reviewed the mode of conditioning lesion reactivating the intrinsic growth program. Importantly, we summarized the intrinsic neuronal determinants for neurite growth such as cAMP, PTEN/mTOR, APC-Cdh1, KLF4, etc., the mechanisms underlying development-dependent decline of CNS neurons growth ability, and procedures to enhance the intrinsic growth potential.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sun F.
        • He Z.
        Neuronal intrinsic barriers for axon regeneration in the adult CNS.
        Curr Opin Neurobiol. 2010; 20: 510-518
        • Fitch M.T.
        • Silver J.
        CNS injury, glial scars, and inflammation: inhibitory extracellular matrices and regeneration failure.
        Exp Neurol. 2008; 209: 294-301
        • He Z.
        Intrinsic control of axon regeneration.
        J Biomed Res. 2010; 24: 2-5
        • Filbin M.T.
        PirB, a second receptor for the myelin inhibitors of axonal regeneration Nogo66, MAG, and OMgp: implications for regeneration in vivo.
        Neuron. 2008; 60: 740-742
        • Goldberg J.L.
        • Klassen M.P.
        • Hua Y.
        • Barres B.A.
        Amacrine-signaled loss of intrinsic axon growth ability by retinal ganglion cells.
        Science. 2002; 296: 1860-1864
        • Yiu G.
        • He Z.
        Glial inhibition of CNS axon regeneration.
        Nat Rev Neurosci. 2006; 7: 617-627
        • Filbin M.T.
        Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS.
        Nat Rev Neurosci. 2003; 4: 703-713
        • Wu D.
        • Yang P.
        • Zhang X.
        • Luo J.
        • Haque M.E.
        • Yeh J.
        • et al.
        Targeting a dominant negative rho kinase to neurons promotes axonal outgrowth and partial functional recovery after rat rubrospinal tract lesion.
        Mol Ther. 2009; 17: 2020-2030
        • Yang P.
        • Wen H.
        • Zhang J.
        Expression of a dominant-negative Rho-kinase promotes neurite outgrowth in a microenvironment mimicking injured central nervous system.
        Acta Pharmacol Sin. 2010; : 1-9
        • Aguayo A.J.
        • Rasminsky M.
        • Bray G.M.
        • Carbonetto S.
        • McKerracher L.
        • Villegas-Perez M.P.
        • et al.
        Degenerative and regenerative responses of injured neurons in the central nervous system of adult mammals.
        Philos Trans R Soc Lond B Biol Sci. 1991; 331: 337-343
        • Abe N.
        • Cavalli V.
        Nerve injury signaling.
        Curr Opin Neurobiol. 2008; 18: 276-283
        • Smith D.S.
        • Skene J.H.
        A transcription-dependent switch controls competence of adult neurons for distinct modes of axon growth.
        J Neurosci. 1997; 17: 646-658
        • Stam F.J.
        • MacGillavry H.D.
        • Armstrong N.J.
        • de Gunst M.C.
        • Zhang Y.
        • van Kesteren R.E.
        • et al.
        Identification of candidate transcriptional modulators involved in successful regeneration after nerve injury.
        Eur J Neurosci. 2007; 25: 3629-3637
        • Cai D.
        • Deng K.
        • Mellado W.
        • Lee J.
        • Ratan R.R.
        • Filbin M.T.
        Arginase I and polyamines act downstream from cyclic AMP in overcoming inhibition of axonal growth MAG and myelin in vitro.
        Neuron. 2002; 35: 711-719
        • Hoffman P.N.
        Expression of GAP-43, a rapidly transported growth-associated protein, and class II beta tubulin, a slowly transported cytoskeletal protein, are coordinated in regenerating neurons.
        J Neurosci. 1989; 9: 893-897
        • Hoffman P.N.
        • Cleveland D.W.
        Neurofilament and tubulin expression recapitulates the developmental program during axonal regeneration: induction of a specific beta-tubulin isotype.
        Proc Natl Acad Sci USA. 1988; 85: 4530-4533
        • Hoffman P.
        A conditioning lesion induces changes in gene expression and axonal transport that enhance regeneration by increasing the intrinsic growth state of axons.
        Exp Neurol. 2010; 223: 11-18
        • Lasek R.J.
        • Garner J.A.
        • Brady S.T.
        Axonal transport of the cytoplasmic matrix.
        J Cell Biol. 1984; 99: 212s-221s
        • Filliatreau G.
        • Denoulet P.
        • de Nechaud B.
        • Di Giamberardino L.
        Stable and metastable cytoskeletal polymers carried by slow axonal transport.
        J Neurosci. 1988; 8: 2227-2233
        • Black M.M.
        • Lasek R.J.
        Slowing of the rate of axonal regeneration during growth and maturation.
        Exp Neurol. 1979; 63: 108-119
        • Komiya Y.
        Slowing with age of the rate of slow axonal flow in bifurcating axons of rat dorsal root ganglion cells.
        Brain Res. 1980; 183: 477-480
        • Hoffman P.N.
        • Lasek R.J.
        • Griffin J.W.
        • Price D.L.
        Slowing of the axonal transport of neurofilament proteins during development.
        J Neurosci. 1983; 3: 1694-1700
        • Curtis R.
        • Scherer S.S.
        • Somogyi R.
        • Adryan K.M.
        • Ip N.Y.
        • Zhu Y.
        • et al.
        Retrograde axonal transport of LIF is increased by peripheral nerve injury: correlation with increased LIF expression in distal nerve.
        Neuron. 1994; 12: 191-204
        • Sun Y.
        • Zigmond R.E.
        Leukaemia inhibitory factor induced in the sciatic nerve after axotomy is involved in the induction of galanin in sensory neurons.
        Eur J Neurosci. 1996; 8: 2213-2220
        • Taga T.
        • Kishimoto T.
        Gp130 and the interleukin-6 family of cytokines.
        Annu Rev Immunol. 1997; 15: 797-819
        • Schweizer U.
        • Gunnersen J.
        • Karch C.
        • Wiese S.
        • Holtmann B.
        • Takeda K.
        • et al.
        Conditional gene ablation of Stat3 reveals differential signaling requirements for survival of motoneurons during development and after nerve injury in the adult.
        J Cell Biol. 2002; 156: 287-297
        • Qiu J.
        • Cafferty W.B.
        • McMahon S.B.
        • Thompson S.W.
        Conditioning injury-induced spinal axon regeneration requires signal transducer and activator of transcription 3 activation.
        J Neurosci. 2005; 25: 1645-1653
        • Richardson P.M.
        • Issa V.M.
        Peripheral injury enhances central regeneration of primary sensory neurones.
        Nature. 1984; 309: 791-793
        • Neumann S.
        • Woolf C.J.
        Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury.
        Neuron. 1999; 23: 83-91
        • Cafferty W.B.
        • Gardiner N.J.
        • Gavazzi I.
        • Powell J.
        • McMahon S.B.
        • Heath J.K.
        • et al.
        Leukemia inhibitory factor determines the growth status of injured adult sensory neurons.
        J Neurosci. 2001; 21: 7161-7170
        • Cao Z.
        • Gao Y.
        • Bryson J.B.
        • Hou J.
        • Chaudhry N.
        • Siddiq M.
        • et al.
        The cytokine interleukin-6 is sufficient but not necessary to mimic the peripheral conditioning lesion effect on axonal growth.
        J Neurosci. 2006; 26: 5565-5573
        • Miao T.
        • Wu D.
        • Zhang Y.
        • Bo X.
        • Subang M.C.
        • Wang P.
        • et al.
        Suppressor of cytokine signaling-3 suppresses the ability of activated signal transducer and activator of transcription-3 to stimulate neurite growth in rat primary sensory neurons.
        J Neurosci. 2006; 26: 9512-9519
        • O'Brien J.J.
        • Nathanson N.M.
        Retrograde activation of STAT3 by leukemia inhibitory factor in sympathetic neurons.
        J Neurochem. 2007; 103: 288-302
        • Schwaiger F.W.
        • Hager G.
        • Schmitt A.B.
        • Horvat A.
        • Hager G.
        • Streif R.
        • et al.
        Peripheral but not central axotomy induces changes in Janus kinases (JAK) and signal transducers and activators of transcription (STAT).
        Eur J Neurosci. 2000; 12: 1165-1176
        • Park K.K.
        • Hu Y.
        • Muhling J.
        • Pollett M.A.
        • Dallimore E.J.
        • Turnley A.M.
        • et al.
        Cytokine-induced SOCS expression is inhibited by cAMP analogue: impact on regeneration in injured retina.
        Mol Cell Neurosci. 2009; 41: 313-324
        • Ihle J.N.
        • Nosaka T.
        • Thierfelder W.
        • Quelle F.W.
        • Shimoda K.
        Jaks and Stats in cytokine signaling.
        Stem cells (Dayton, Ohio). 1997; 15 (discussion 12.): 105-111
        • Krebs D.L.
        • Hilton D.J.
        SOCS proteins: negative regulators of cytokine signaling.
        Stem cells (Dayton, Ohio). 2001; 19: 378-387
        • Croker B.A.
        • Kiu H.
        • Nicholson S.E.
        SOCS regulation of the JAK/STAT signalling pathway.
        Semin Cell Dev Biol. 2008; 19: 414-422
        • Smith P.D.
        • Sun F.
        • Park K.K.
        • Cai B.
        • Wang C.
        • Kuwako K.
        • et al.
        SOCS3 deletion promotes optic nerve regeneration in vivo.
        Neuron. 2009; 64: 617-623
        • Park K.K.
        • Liu K.
        • Hu Y.
        • Smith P.D.
        • Wang C.
        • Cai B.
        • et al.
        Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway.
        Science. 2008; 322: 963-966
        • Newbern J.M.
        • Shoemaker S.E.
        • Snider W.D.
        Taking off the SOCS: cytokine signaling spurs regeneration.
        Neuron. 2009; 64: 591-592
        • Moore D.L.
        • Blackmore M.G.
        • Hu Y.
        • Kaestner K.H.
        • Bixby J.L.
        • Lemmon V.P.
        • et al.
        KLF family members regulate intrinsic axon regeneration ability.
        Science. 2009; 326: 298-301
        • Murray A.J.
        • Shewan D.A.
        Epac mediates cyclic AMP-dependent axon growth, guidance and regeneration.
        Mol Cell Neurosci. 2008; 38: 578-588
        • Shewan D.
        • Dwivedy A.
        • Anderson R.
        • Holt C.E.
        Age-related changes underlie switch in netrin-1 responsiveness as growth cones advance along visual pathway.
        Nat Neurosci. 2002; 5: 955-962
        • Cai D.
        • Qiu J.
        • Cao Z.
        • McAtee M.
        • Bregman B.S.
        • Filbin M.T.
        Neuronal cyclic AMP controls the developmental loss in ability of axons to regenerate.
        J Neurosci. 2001; 21: 4731-4739
        • Domeniconi M.
        • Filbin M.T.
        Overcoming inhibitors in myelin to promote axonal regeneration.
        J Neurol Sci. 2005; 233: 43-47
        • Filbin M.T.
        Recapitulate development to promote axonal regeneration: good or bad approach?.
        Philos Trans R Soc Lond B Biol Sci. 2006; 361: 1565-1574
        • Mukhopadhyay G.
        • Doherty P.
        • Walsh F.S.
        • Crocker P.R.
        • Filbin M.T.
        A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration.
        Neuron. 1994; 13: 757-767
        • Turnley A.M.
        • Bartlett P.F.
        MAG and MOG enhance neurite outgrowth of embryonic mouse spinal cord neurons.
        Neuroreport. 1998; 9: 1987-1990
        • Qiu J.
        • Cai D.
        • Dai H.
        • McAtee M.
        • Hoffman P.N.
        • Bregman B.S.
        • et al.
        Spinal axon regeneration induced by elevation of cyclic AMP.
        Neuron. 2002; 34: 895-903
        • Neumann S.
        • Bradke F.
        • Tessier-Lavigne M.
        • Basbaum A.I.
        Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation.
        Neuron. 2002; 34: 885-893
        • Hannila S.S.
        • Filbin M.T.
        The role of cyclic AMP signaling in promoting axonal regeneration after spinal cord injury.
        Exp Neurol. 2008; 209: 321-332
        • Hellstrom M.
        • Muhling J.
        • Ehlert E.M.
        • Verhaagen J.
        • Pollett M.A.
        • Hu Y.
        • et al.
        Negative impact of rAAV2 mediated expression of SOCS3 on the regeneration of adult retinal ganglion cell axons.
        Mol Cell Neurosci. 2011; 46: 507-515
        • Liu K.
        • Lu Y.
        • Lee J.K.
        • Samara R.
        • Willenberg R.
        • Sears-Kraxberger I.
        • et al.
        PTEN deletion enhances the regenerative ability of adult corticospinal neurons.
        Nat Neurosci. 2010; 13: 1075-1081
        • Lachyankar M.B.
        • Sultana N.
        • Schonhoff C.M.
        • Mitra P.
        • Poluha W.
        • Lambert S.
        • et al.
        A role for nuclear PTEN in neuronal differentiation.
        J Neurosci. 2000; 20: 1404-1413
        • Maehama T.
        • Dixon J.E.
        The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate.
        J Biol Chem. 1998; 273: 13375-13378
        • Guertin D.A.
        • Sabatini D.M.
        An expanding role for mTOR in cancer.
        Trends Mol Med. 2005; 11: 353-361
        • Hay N.
        The Akt-mTOR tango and its relevance to cancer.
        Cancer Cell. 2005; 8: 179-183
        • Tee A.R.
        • Blenis J.
        mTOR, translational control and human disease.
        Semin Cell Dev Biol. 2005; 16: 29-37
        • Park K.K.
        • Liu K.
        • Hu Y.
        • Kanter J.L.
        • He Z.
        PTEN/mTOR and axon regeneration.
        Exp Neurol. 2010; 223: 45-50
        • Iavarone A.
        • Lasorella A.
        ID proteins as targets in cancer and tools in neurobiology.
        Trends Mol Med. 2006; 12: 588-594
        • Konishi Y.
        • Stegmuller J.
        • Matsuda T.
        • Bonni S.
        • Bonni A.
        Cdh1-APC controls axonal growth and patterning in the mammalian brain.
        Science. 2004; 303: 1026-1030
        • Gieffers C.
        • Peters B.H.
        • Kramer E.R.
        • Dotti C.G.
        • Peters J.M.
        Expression of the CDH1-associated form of the anaphase-promoting complex in postmitotic neurons.
        Proc Natl Acad Sci USA. 1999; 96: 11317-11322
        • Lasorella A.
        • Stegmuller J.
        • Guardavaccaro D.
        • Liu G.
        • Carro M.S.
        • Rothschild G.
        • et al.
        Degradation of Id2 by the anaphase-promoting complex couples cell cycle exit and axonal growth.
        Nature. 2006; 442: 471-474
        • Stegmuller J.
        • Konishi Y.
        • Huynh M.A.
        • Yuan Z.
        • Dibacco S.
        • Bonni A.
        Cell-intrinsic regulation of axonal morphogenesis by the Cdh1-APC target SnoN.
        Neuron. 2006; 50: 389-400
        • Stegmuller J.
        • Bonni A.
        Moving past proliferation: new roles for Cdh1-APC in postmitotic neurons.
        Trends Neurosci. 2005; 28: 596-601
        • Rossi F.
        • Gianola S.
        • Corvetti L.
        Regulation of intrinsic neuronal properties for axon growth and regeneration.
        Prog Neurobiol. 2007; 81: 1-28
        • Muller A.
        • Hauk T.G.
        • Leibinger M.
        • Marienfeld R.
        • Fischer D.
        Exogenous CNTF stimulates axon regeneration of retinal ganglion cells partially via endogenous CNTF.
        Mol Cell Neurosci. 2009; 41: 233-246
        • Kurimoto T.
        • Yin Y.
        • Omura K.
        • Gilbert H.Y.
        • Kim D.
        • Cen L.P.
        • et al.
        Long-distance axon regeneration in the mature optic nerve: contributions of oncomodulin, cAMP, and pten gene deletion.
        J Neurosci. 2010; 30: 15654-15663
        • Hu Y.
        • Cui Q.
        • Harvey A.R.
        Interactive effects of C3, cyclic AMP and ciliary neurotrophic factor on adult retinal ganglion cell survival and axonal regeneration.
        Mol Cell Neurosci. 2007; 34: 88-98