Advertisement
Research Article| Volume 312, ISSUE 1-2, P146-157, January 15, 2012

Preimplantation Factor (PIF*) reverses neuroinflammation while promoting neural repair in EAE model

Published:October 14, 2011DOI:https://doi.org/10.1016/j.jns.2011.07.050

      Abstract

      Introduction

      Embryo-derived PIF modulates systemic maternal immunity without suppression. Synthetic analog (sPIF) prevents juvenile diabetes, preserves islet function, reducing oxidative stress/protein misfolding. We investigate sPIF effectiveness in controlling neuroinflammation/MS.

      Methods

      Examine sPIF-induced protection against harsh, clinical-relevant murine EAE-PLP acute and chronic models. Evaluate clinical indices: circulating cytokines, spinal cord histology, genome, canonical global proteome, cultured PLP-activated splenocytes cytokines, and immunophenotype.

      Results

      Short-term, low-dose sPIF prevented paralysis development and lowered mortality (P<0.05). Episodic sPIF reversed chronic paralysis (P<0.0001) completely in >50%, by day 82. Prevention model: 12 days post-therapy, sPIF reduced circulating IL12 ten-fold and inflammatory cells access to spinal cord. Regression model: sPIF blocked PLP-induced IL17 and IL6 secretions. Long-term chronic model: sPIF reduced spinal cord pro-inflammatory cytokines/chemokines, (ALCAM, CF1, CCL8), apoptosis-promoters, inflammatory cells access (JAM3, OPA1), solute channels (ATPases), aberrant coagulation factors (Serpins), and pro-antigenic MOG. Canonical proteomic analysis demonstrated reduced oxidative phosphorylation, vesicle traffic, cytoskeleton remodeling involved in neuro-cytoskeleton breakdown (tubulins), associated with axon re-assembly by (MTAPs)/improved synaptic transmission.

      Conclusion

      sPIF – through coordinated central and systemic multi-targeted action – reverses neuroinflammation/MS and imparts significant neuroprotective effects up to total paralysis resolution. Clinical testing is warranted and planned.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sospedra M.
        • Martin R.
        Immunology of multiple sclerosis.
        Annu Rev Immunol. 2005; 23: 683-747
        • Haffer D.A.
        Multiple sclerosis.
        J Clin Invest. 2004; 113: 788-794
        • Nicolò C.
        • Sali M.
        • Di Sante G.
        • Geloso M.C.
        • Signori E.
        • Penitente R.
        • et al.
        Mycobacterium smegmatis expressing a chimeric protein MPT64-proteolipid protein (PLP) 139–151 reorganizes the PLP-specific T cell repertoire favoring a CD8-mediated response and induces a relapsing experimental autoimmune encephalomyelitis.
        J Immunol. Jan. 1 2010; 184 (Epub 2009 Nov 30): 222-235
        • Sturzebecher S.
        • Wandinger K.P.
        • Rosenwald A.
        • Sathyamoorthy M.
        • Tzou A.
        • Mattar P.
        • et al.
        Expression profiling identifies responder and non-responder phenotypes to interferon-beta in multiple sclerosis.
        Brain. 2003; 126: 1419-1429
        • Johnson K.P.
        • Brooks B.R.
        • Cohen J.A.
        • Ford C.C.
        • Goldstein J.
        • Lisak R.P.
        • et al.
        Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of phase III multicenter, double-blind placebo-controlled trial.
        Neurology. 1995; 45: 1268-1276
        • Miller D.H.
        • Khan O.A.
        • Sheremata W.A.
        • Blumhardt L.D.
        • Rice G.P.
        • Libonati M.A.
        • et al.
        International Natalizumab Multiple Sclerosis Trial Group. A controlled trial of natalizumab for relapsing multiple sclerosis.
        N Engl J Med. 2003; 348: 15-23
        • Burt R.K.
        • Cohen B.A.
        • Russell E.
        • Spero K.
        • Joshi A.
        • Oyama Y.
        • et al.
        Hematopoietic stem cell transplantation for progressive multiple sclerosis: failure of a total body irradiation-based conditioning regimen to prevent disease progression in patients with high disability scores.
        Blood. 2003; 102: 2373-2378
        • Runmarker B.
        • Andersen O.
        Pregnancy is associated with a lower risk of onset and better prognosis in multiple sclerosis.
        Brain. 1995; 188: 253-261
        • Kaaja R.J.
        • Greer I.A.
        Manifestations of chronic disease during pregnancy.
        JAMA. 2005; 21 (2751–57.36)
        • Kim S.
        • Liva S.M.
        • Dalal M.A.
        • Verity M.A.
        • Voskuhl R.R.
        Estriol ameliorates autoimmune demyelinating disease: implications for multiple sclerosis.
        Neurology. 1998; 52: 1230-1238
        • Irony-Tur-Sinai M.
        • Grigoriadis N.
        • Lourbopoulos A.
        • Pinto-Maaravi F.
        • Abramsky O.
        • Brenner T.
        Amelioration of autoimmune neuroinflammation by recombinant human alphafetoprotein.
        Exp Neurol. 2006; 198: 136-144
        • Harness J.
        • Cavanagh A.
        • Morton H.
        • McCombe P.
        A protective effect of early pregnancy factor on experimental autoimmune encephalomyelitis induced in Lewis rats by inoculation with myelin basic protein.
        J Neurol Sci. 2003; 216: 33-41
        • Karussis D.
        • Lehmann D.
        • Slavin S.
        • Vourka-Karussis U.
        • Mizrachi Koll R.
        • Ovadia H.
        • et al.
        Inhibition of acute, experimental autoimmune encephalomyelitis by the synthetic immunomodulator linomide.
        Ann Neurol. 1993; 34: 654-660
        • Schreiner B.
        • Heppner F.L.
        • Becher B.
        Modeling multiple sclerosis in laboratory animals.
        Semin Immunopathol. 2009; 31: 479-495https://doi.org/10.1007/s00281-009-0181-4
        • Jiang S.P.
        • Vacchio M.S.
        Multiple mechanisms of peripheral T cell tolerance to the fetal-allograft.
        J Immunol. 1998; 160: 3086-3090
        • Moffett A.
        • Loke Y.W.
        The immunological paradox of pregnancy: a reappraisal.
        Placenta. 2004; 25: 1-8
        • Barnea E.R.
        • Lahijani K.I.
        • Roussev R.
        • Barnea J.D.
        • Coulam C.B.
        Use of lymphocyte platelet binding assay for detecting a pre-implantation factor: a quantitative assay.
        Am J Reprod Immunol. 1994; 32: 133-138
        • Roussev R.G.
        • Coulam C.B.
        • Kaider B.D.
        • Yarkoni M.
        • Barnea E.R.
        Embryonic origin of preimplantation factor (PIF): biological activity and partial characterization.
        Mol Hum Reprod. 1996; 2: 883-887
        • Coulam C.B.
        • Roussev R.G.
        • Thomasson E.J.
        • Barnea E.R.
        Pre-implantation factor (PIF) predicts subsequent pregnancy loss.
        Am J Reprod Immunol. 1995; 34: 88-92
        • Barnea E.R.
        • Simon J.
        • Levine S.P.
        • Coulam C.B.
        • Taliadouros G.S.
        • Leavis P.C.
        Progress in characterization of pre-implantation factor (PIF) in embryo cultures and in vivo.
        J Reprod Immunol. 1999; 42: 95-99
        • Barnea E.R.
        • et al.
        Assays for preimplantation factor and preimplantation factor peptides. United States patent no. US7,273,708 B2. Sep. 25 2007
        • Barnea E.R.
        Insight into early pregnancy events: the emerging role of the embryo.
        Am J Reprod Immunol. 2004; 51: 319-322
        • Barnea E.R.
        Signaling between embryo and mother in early pregnancy: basis for development of tolerance.
        in: Carp H. Recurrent pregnancy loss. Taylor & Francis, 2007: 15-23
        • Stamatkin C.W.
        • Roussev R.G.
        • Stout M.
        • Absalon-Medina V.
        • Ramu S.
        • Goodman C.
        • et al.
        PreImplantation Factor (PIF*) correlates with early mammalian embryo development—bovine and murine models.
        Reprod Biol Endocrinol J. 2011; 9: 63-73
        • Stamatkin C.W.
        • Roussev R.G.
        • Stout M.
        • Coulam C.B.
        • Triche E.
        • Godke R.A.
        • et al.
        PreImplantation Factor negates embryo toxicity and promotes embryo development in culture.
        Reprod Biomed Online. 2011; https://doi.org/10.1016/j.rbmo.2011.06.009
        • Paidas M.
        • Krikun G.
        • Haung J.
        • Jones R.
        • Romano M.
        • Annunziato J.
        • et al.
        Genomic and proteomic investigation of preimplantation factor's impact on human decidual cells.
        Am J Obstet Gynecol. 2010; 202: 459.e1-459.e8
        • Duzyj C.M.
        • Barnea E.R.
        • Li M.
        • Huang S.J.
        • Krikun G.
        • Paidas M.J.
        Preimplantation factor promotes first trimester trophoblast invasion.
        Am J Obstet Gynecol. 2010; 203 (Epub 2010 Aug 12): 402.e1-402.e4
        • Barnea E.R.
        Applying embryo-derived immune tolerance to the treatment of immune disorders.
        Ann N Y Acad Sci. 2007; 1110: 602-618
      1. E.R. Barnea, S. Ramu, PIF modulated gene expression in human Peripheral Blood Mononuclear Cell (PBMCs) GSE18291[Accession]. NCBI, GeoDatasets.

        • Weiss L.
        • Bernstein S.
        • Jones R.
        • Amunugama R.
        • Krizman D.
        • JeBailey L.
        • et al.
        PreImplantation Factor (PIF) analog prevents type I diabetes mellitus (TIDM) development by preserving pancreatic function in NOD mice.
        Endocrine. Mar. 22 2011; (Epub)
        • Hart B.A.
        • Brok H.P.
        • Remarque E.
        • Benson J.
        • Treacy G.
        • Amor S.
        • et al.
        Suppression of ongoing disease in a nonhuman primate model of multiple sclerosis by a human-anti-human IL-12p40 antibody.
        J Immunol. 2005; 175: 4761-4768
        • Lin W.
        • Kemper A.
        • Dupree J.L.
        • Harding H.P.
        • Ron D.
        • Popko B.
        Interferon-gamma inhibits central nervous system remyelination through a process modulated by endoplasmic reticulum stress.
        Brain. 2006; 129 (Epub 2006 Feb 27): 1306-1318
        • Iacobas D.A.
        • Iacobas S.
        • Werner P.
        • Scemes E.
        • Spray D.C.
        Alterations of transcriptomic networks in adoptive transfer experimental autoimmune encephalomyelitis.
        Front Integ Neurosci. 2007; 1: 1-17
        • Linker R.A.
        • Lϋhder F.
        • Kallen K.J.
        • Lee D.H.
        • Engelhardt B.
        • Rose-John S.
        • et al.
        IL-6 transsignalling modulates the early effector phase of EAE and targets the blood–brain barrier.
        J Neuroimmunol. 2008; 205: 64-72
        • Bettelli E.
        • Korn T.
        • Oukka M.
        • Kuchroo V.K.
        Induction and effector functions of T(H)17 cells.
        Nature. Jun. 19 2008; 453: 1051-1057
        • Brunn A.
        • Utermohlen O.
        • Carstov M.
        • Ruiz M.S.
        • Miletic H.
        • Schluter D.
        • et al.
        CD4 T cells mediate axonal damage and spinal cord motor neuron apoptosis in murine PO106-125-induced experimental autoimmune neuritis.
        Am J Pathol. Jul. 2008; 173 (Epub 2008 Jun 5): 93-105
        • Basu A.
        • Krady J.K.
        • Levinson S.W.
        Interleukin-1: a master regulator of neuroinflammation.
        J Neurosci Res. 2004; 78: 151-156
        • Zhang G.
        • Ghosh S.
        Negative regulation of Toll-like receptor-mediated signaling by Tollip.
        J Biol Chem. 2002; 277: 7059-7065
        • Komiyama Y.
        • Nakae S.
        • Matsuki T.
        • Nambu A.
        • Ishigame H.
        • Kakuta S.
        • et al.
        IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis.
        J Immunol. 2006; 177: 566-573
        • Leng L.
        • Metz C.N.
        • Fang Y.
        • Xu J.
        • Donnelly S.
        • Baugh J.
        • et al.
        MIF signal transduction initiated by binding to CD74.
        J Exp Med. 2003; 197: 1467-1476
        • Mahad D.J.
        • Ransohoff R.M.
        The role of MCP-1 (CCL2) and CCR2 in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE).
        Semin Immunol. 2003; 15 (Review): 23-32
        • Cayrol R.
        • Wosik K.
        • Berard J.L.
        • Dodelet-Devillers A.
        • Ifergan I.
        • Kebir H.
        • et al.
        Activated leukocyte cell adhesion molecule promotes leukocyte trafficking into the central nervous system.
        Nat Immunol. 2003; 8: 137-145
      2. F.A. Loucks, Caspases indirectly regulate cleavage of the mitochondrial fusion GTPase OPA1 in neurons undergoing apoptosis Brain Res Brain Res 2009 Jan 23;1250:63–74 2008;Nov 18. [Epub ahead of print].

        • Inoue A.
        • Koh C.S.
        • Shimada K.
        • Yanagisawa N.
        • Yoshimura K.
        Suppression of celltransferred experimental autoimmune encephalomyelitis in defibrinated Lewis rats.
        J Neuroimmunol. 1996; 71: 131-137
        • Chapman J.
        Thrombin in inflammatory brain diseases.
        Autoimmunity. 2006; (Rev. 5, 528-31-38)
        • Madsen L.S.
        • Christophersen P.
        • Olesen S.P.
        Blockade of Ca2+-activated K+ channels in T cells: an option for the treatment of multiple sclerosis?.
        Eur J Immunol. 2005; 35: 1023-1026
        • Reich E.P.
        • Cui L.
        • Yang L.
        • Pugliese-Sivo C.
        • Golovko A.
        • Petro M.
        • et al.
        Blocking ion channel KCNN4 alleviates the symptoms of experimental autoimmune encephalomyelitis in mice.
        Eur J Immunol. 2005; 35: 1027-1036
        • Semra Y.K.
        • Seidi O.A.
        • Sharief M.K.
        Heightened intrathecal release of axonal cytoskeletal proteins in multiple sclerosis is associated with progressive disease and clinical disability.
        J Neuroimmunol. 2002; 122: 132-139
        • Miller K.E.
        • Joshi H.C.
        Tubulin transport in neurons.
        J Cell Biol. 1996; 133: 1355-1366
        • Sarchielli P.
        • DiFilippo M.
        • Candeliere A.
        • Chiasserini D.
        • Mattioni A.
        • Tenaglia S.
        • et al.
        Expression of ionotropic glutamate receptor GLUR3 and effects of glutamate on MBP- and MOG-specific lymphocyte activation and chemotactic migration in multiple sclerosis patients.
        J Neuroimmunol. Aug. 2007; 188 (Epub 2007 Jul 12): 146-158
        • Kooi E.J.
        • van Horssen J.
        • Witte M.E.
        • Amor S.
        • Bo L.
        • Dijkstra C.D.
        • et al.
        Abundant extracellular myelin in the meninges of patients with multiple sclerosis.
        Neuropathol Appl Neurobiol. Jun. 2009; 35 (Epub 2008 Sept 17): 283-295
        • Empson R.M.
        • Buckby L.E.
        • Kraus M.
        • Bates K.J.
        • Crompton M.R.
        • Gundelfinger E.D.
        • et al.
        The cell adhesion molecule neuroplastin-65 inhibits hippocampal long-term potentiation via a mitogen-activated protein kinase p38-dependent reduction in surface expression of GluR1-containing glutamate receptors.
        J Neurochem. 2006; 9: 850-860
        • Burns M.E.
        • Sasaki T.
        • Takai Y.
        • Augustine G.J.
        Rabphilin-3A: a multifunctional regulator of synaptic vesicle traffic.
        J Gen Physiol. 1998; 111: 243-245
        • Engmann O.
        • Giese K.P.
        Crosstalk between Cdk5 and GSK3beta: implications for Alzheimer's disease.
        Front Mol Neurosci. 2009; 2 (Epub 2009 May 29): 2
        • Khelfaoui M.
        • Pavlowsky A.
        • Powell A.D.
        • Valnegri P.
        • Cheong K.W.
        • Blandin Y.
        • et al.
        Inhibition of RhoA pathway rescues the endocytosis defects in Oligophrenin1 mouse model of mental retardation.
        Hum Mol Genet. 2009; 18 (Epub 2009 Apr 28): 2575-2583