Altered tryptophan metabolism in Parkinson's disease: A possible novel therapeutic approach

Published:August 08, 2011DOI:https://doi.org/10.1016/j.jns.2011.07.021

      Abstract

      Parkinson's disease (PD) is one of the most common disabling neurodegenerative diseases. Although several therapeutic approaches are available, there are two major unresolved issues: the lack of proved neuroprotective therapy and the treatment of L-dopa-induced motor complications. In the brain, 90% of the tryptophan is metabolized in the kynurenine pathway. Some of the intermediates, such as quinolinic acid and 3-hydroxy kynurenine, are neurotoxic, while others, such as kynurenic acid, are putative intrinsic neuroprotective compounds, mainly by acting as endogenous antagonists of ionotropic excitatory amino acid receptors. Alterations in the kynurenine pathway have been demonstrated in PD. Preclinical data suggest that intervention in the kynurenine pathway may result in neuroprotection and may alleviate L-dopa-induced dyskinesia. There are two alternative approaches for such intervention: the use of kynurenic acid analogues or pro-drugs, or modulation of the activities of the intrinsic enzymes of the pathway.

      Keywords

      To read this article in full you will need to make a payment

      References

        • Cotzias G.C.
        • Van Woert M.H.
        • Schiffer L.M.
        Aromatic amino acids and modification of parkinsonism.
        N Engl J Med. Feb 16 1967; 276: 374-379
        • Kincses Z.T.
        • Szabo N.
        • Vecsei L.
        New therapies for treating early Parkinson's disease.
        CML – Neurology. 2010; 26: 65-79
        • Rakoczi K.
        • Klivenyi P.
        • Vecsei L.
        Neuroprotection in Parkinson's disease and other neurodegenerative disorders: preclinical and clinical findings.
        Ideggyogy Sz. Jan 30 2009; 62: 25-34
        • Kincses Z.T.
        • Vecsei L.
        Pharmacological therapy in Parkinson's disease: focus on neuroprotection.
        CNS Neurosci Ther. Apr 23 2010;
        • Dingledine R.
        • Borges K.
        • Bowie D.
        • Traynelis S.F.
        The glutamate receptor ion channels.
        Pharmacol Rev. Mar 1999; 51: 7-61
        • Greenamyre J.T.
        • Porter R.H.
        Anatomy and physiology of glutamate in the CNS.
        Neurology. Nov 1994; 44: S7-S13
        • Hetz C.A.
        ER stress signaling and the BCL-2 family of proteins: from adaptation to irreversible cellular damage.
        Antioxid Redox Signal. Dec 2007; 9: 2345-2355
        • Lindholm D.
        • Wootz H.
        • Korhonen L.
        ER stress and neurodegenerative diseases.
        Cell Death Differ. Mar 2006; 13: 385-392
        • Shacka J.J.
        • Lu J.
        • Xie Z.L.
        • Uchiyama Y.
        • Roth K.A.
        • Zhang J.
        Kainic acid induces early and transient autophagic stress in mouse hippocampus.
        Neurosci Lett. Feb 27 2007; 414: 57-60
        • Chan C.S.
        • Gertler T.S.
        • Surmeier D.J.
        Calcium homeostasis, selective vulnerability and Parkinson's disease.
        Trends Neurosci. May 2009; 32: 249-256
        • Mammucari C.
        • Rizzuto R.
        Signaling pathways in mitochondrial dysfunction and aging.
        Mech Ageing Dev. Jul-Aug 2010; 131: 536-543
        • Smith Y.
        • Bennett B.D.
        • Bolam J.P.
        • Parent A.
        • Sadikot A.F.
        Synaptic relationships between dopaminergic afferents and cortical or thalamic input in the sensorimotor territory of the striatum in monkey.
        J Comp Neurol. Jun 1 1994; 344: 1-19
        • Abercrombie E.D.
        • DeBoer P.
        • Heeringa M.J.
        Biochemistry of somatodendritic dopamine release in substantia nigra: an in vivo comparison with striatal dopamine release.
        Adv Pharmacol. 1998; 42: 133-136
        • Gonon F.
        Prolonged and extrasynaptic excitatory action of dopamine mediated by D1 receptors in the rat striatum in vivo.
        J Neurosci. Aug 1 1997; 17: 5972-5978
        • Miller D.W.
        • Abercrombie E.D.
        Role of high-affinity dopamine uptake and impulse activity in the appearance of extracellular dopamine in striatum after administration of exogenous L-DOPA: studies in intact and 6-hydroxydopamine-treated rats.
        J Neurochem. Apr 1999; 72: 1516-1522
        • Glavan G.
        Intermittent L-DOPA treatment differentially alters synaptotagmin 4 and 7 gene expression in the striatum of hemiparkinsonian rats.
        Brain Res. Oct 21 2008; 1236: 216-224
        • Westin J.E.
        • Andersson M.
        • Lundblad M.
        • Cenci M.A.
        Persistent changes in striatal gene expression induced by long-term L-DOPA treatment in a rat model of Parkinson's disease.
        Eur J Neurosci. Oct 2001; 14: 1171-1176
        • Morissette M.
        • Goulet M.
        • Soghomonian J.J.
        • Blanchet P.J.
        • Calon F.
        • Bedard P.J.
        • et al.
        Preproenkephalin mRNA expression in the caudate-putamen of MPTP monkeys after chronic treatment with the D2 agonist U91356A in continuous or intermittent mode of administration: comparison with L-DOPA therapy.
        Brain Res Mol Brain Res. Oct 3 1997; 49: 55-62
        • Henry B.
        • Duty S.
        • Fox S.H.
        • Crossman A.R.
        • Brotchie J.M.
        Increased striatal pre-proenkephalin B expression is associated with dyskinesia in Parkinson's disease.
        Exp Neurol. Oct 2003; 183: 458-468
        • Silberstein P.
        • Oliviero A.
        • Di Lazzaro V.
        • Insola A.
        • Mazzone P.
        • Brown P.
        Oscillatory pallidal local field potential activity inversely correlates with limb dyskinesias in Parkinson's disease.
        Exp Neurol. Aug 2005; 194: 523-529
        • Lozano A.M.
        • Lang A.E.
        • Levy R.
        • Hutchison W.
        • Dostrovsky J.
        Neuronal recordings in Parkinson's disease patients with dyskinesias induced by apomorphine.
        Ann Neurol. Apr 2000; 47: S141-S146
        • Schrag A.
        • Quinn N.
        Dyskinesias and motor fluctuations in Parkinson's disease. A community-based study.
        Brain. Nov 2000; 123: 2297-2305
        • Mouradian M.M.
        • Heuser I.J.
        • Baronti F.
        • Fabbrini G.
        • Juncos J.L.
        • Chase T.N.
        Pathogenesis of dyskinesias in Parkinson's disease.
        Ann Neurol. May 1989; 25: 523-526
        • de la Fuente-Fernandez R.
        • Sossi V.
        • Huang Z.
        • Furtado S.
        • Lu J.Q.
        • Calne D.B.
        • et al.
        Levodopa-induced changes in synaptic dopamine levels increase with progression of Parkinson's disease: implications for dyskinesias.
        Brain. Dec 2004; 127: 2747-2754
        • Calabresi P.
        • Di Filippo M.
        • Ghiglieri V.
        • Tambasco N.
        • Picconi B.
        Levodopa-induced dyskinesias in patients with Parkinson's disease: filling the bench-to-bedside gap.
        Lancet Neurol. Nov 2010; 9: 1106-1117
        • Pisani A.
        • Centonze D.
        • Bernardi G.
        • Calabresi P.
        Striatal synaptic plasticity: implications for motor learning and Parkinson's disease.
        Mov Disord. Apr 2005; 20: 395-402
        • Picconi B.
        • Centonze D.
        • Hakansson K.
        • Bernardi G.
        • Greengard P.
        • Fisone G.
        • et al.
        Loss of bidirectional striatal synaptic plasticity in L-DOPA-induced dyskinesia.
        Nat Neurosci. May 2003; 6: 501-506
        • Prescott I.A.
        • Dostrovsky J.O.
        • Moro E.
        • Hodaie M.
        • Lozano A.M.
        • Hutchison W.D.
        Levodopa enhances synaptic plasticity in the substantia nigra pars reticulata of Parkinson's disease patients.
        Brain. Feb 2009; 132: 309-318
        • Fiorentini C.
        • Busi C.
        • Spano P.
        • Missale C.
        Role of receptor heterodimers in the development of L-dopa-induced dyskinesias in the 6-hydroxydopamine rat model of Parkinson's disease.
        Parkinsonism Relat Disord. 2008; 14: S159-S164
        • Dunah A.W.
        • Standaert D.G.
        Dopamine D1 receptor-dependent trafficking of striatal NMDA glutamate receptors to the postsynaptic membrane.
        J Neurosci. Aug 1 2001; 21: 5546-5558
        • Scott L.
        • Zelenin S.
        • Malmersjo S.
        • Kowalewski J.M.
        • Markus E.Z.
        • Nairn A.C.
        • et al.
        Allosteric changes of the NMDA receptor trap diffusible dopamine 1 receptors in spines.
        Proc Natl Acad Sci USA. Jan 17 2006; 103: 762-767
        • Gardoni F.
        • Picconi B.
        • Ghiglieri V.
        • Polli F.
        • Bagetta V.
        • Bernardi G.
        • et al.
        A critical interaction between NR2B and MAGUK in L-DOPA induced dyskinesia.
        J Neurosci. Mar 15 2006; 26: 2914-2922
        • Blanchet P.J.
        • Konitsiotis S.
        • Chase T.N.
        Amantadine reduces levodopa-induced dyskinesias in parkinsonian monkeys.
        Mov Disord. Sep 1998; 13: 798-802
        • Verhagen Metman L.
        • Del Dotto P.
        • van den Munckhof P.
        • Fang J.
        • Mouradian M.M.
        • Chase T.N.
        Amantadine as treatment for dyskinesias and motor fluctuations in Parkinson's disease.
        Neurology. May 1998; 50: 1323-1326
        • Metman L.V.
        • Del Dotto P.
        • LePoole K.
        • Konitsiotis S.
        • Fang J.
        • Chase T.N.
        Amantadine for levodopa-induced dyskinesias: a 1-year follow-up study.
        Arch Neurol. Nov 1999; 56: 1383-1386
        • Wolf E.
        • Seppi K.
        • Katzenschlager R.
        • Hochschorner G.
        • Ransmayr G.
        • Schwingenschuh P.
        • et al.
        Long-term antidyskinetic efficacy of amantadine in Parkinson's disease.
        Mov Disord. Jul 30 2010; 25: 1357-1363
        • Nutt J.G.
        • Gunzler S.A.
        • Kirchhoff T.
        • Hogarth P.
        • Weaver J.L.
        • Krams M.
        • et al.
        Effects of a NR2B selective NMDA glutamate antagonist, CP-101,606, on dyskinesia and Parkinsonism.
        Mov Disord. Oct 15 2008; 23: 1860-1866
        • Vamos E.
        • Pardutz A.
        • Klivenyi P.
        • Toldi J.
        • Vecsei L.
        The role of kynurenines in disorders of the central nervous system: possibilities for neuroprotection.
        J Neurol Sci. Aug 15 2009; 283: 21-27
        • Zadori D.
        • Klivenyi P.
        • Vamos E.
        • Fulop F.
        • Toldi J.
        • Vecsei L.
        Kynurenines in chronic neurodegenerative disorders: future therapeutic strategies.
        J Neural Transm. Nov 2009; 116: 1403-1409
        • Sas K.
        • Robotka H.
        • Toldi J.
        • Vecsei L.
        Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders.
        J Neurol Sci. Jun 15 2007; 257: 221-239
        • Birch P.J.
        • Grossman C.J.
        • Hayes A.G.
        Kynurenic acid antagonises responses to NMDA via an action at the strychnine-insensitive glycine receptor.
        Eur J Pharmacol. Sep 1 1988; 154: 85-87
        • Prescott C.
        • Weeks A.M.
        • Staley K.J.
        • Partin K.M.
        Kynurenic acid has a dual action on AMPA receptor responses.
        Neurosci Lett. Jul 10 2006; 402: 108-112
        • Rozsa E.
        • Robotka H.
        • Vecsei L.
        • Toldi J.
        The Janus-face kynurenic acid.
        J Neural Transm. Aug 2008; 115: 1087-1091
        • Hilmas C.
        • Pereira E.F.
        • Alkondon M.
        • Rassoulpour A.
        • Schwarcz R.
        • Albuquerque E.X.
        The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications.
        J Neurosci. Oct 1 2001; 21: 7463-7473
        • Tavares R.G.
        • Tasca C.I.
        • Santos C.E.
        • Alves L.B.
        • Porciuncula L.O.
        • Emanuelli T.
        • et al.
        Quinolinic acid stimulates synaptosomal glutamate release and inhibits glutamate uptake into astrocytes.
        Neurochem Int. Jun 2002; 40: 621-627
        • Rios C.
        • Santamaria A.
        Quinolinic acid is a potent lipid peroxidant in rat brain homogenates.
        Neurochem Res. Oct 1991; 16: 1139-1143
        • Behan W.M.
        • McDonald M.
        • Darlington L.G.
        • Stone T.W.
        Oxidative stress as a mechanism for quinolinic acid-induced hippocampal damage: protection by melatonin and deprenyl.
        Br J Pharmacol. Dec 1999; 128: 1754-1760
        • Widner B.
        • Leblhuber F.
        • Fuchs D.
        Increased neopterin production and tryptophan degradation in advanced Parkinson's disease.
        J Neural Transm. Feb 2002; 109: 181-189
        • Ogawa T.
        • Matson W.R.
        • Beal M.F.
        • Myers R.H.
        • Bird E.D.
        • Milbury P.
        • et al.
        Kynurenine pathway abnormalities in Parkinson's disease.
        Neurology. Sep 1992; 42: 1702-1706
        • Hartai Z.
        • Klivenyi P.
        • Janaky T.
        • Penke B.
        • Dux L.
        • Vecsei L.
        Kynurenine metabolism in plasma and in red blood cells in Parkinson's disease.
        J Neurol Sci. Dec 15 2005; 239: 31-35
        • Knyihar-Csillik E.
        • Csillik B.
        • Pakaski M.
        • Krisztin-Peva B.
        • Dobo E.
        • Okuno E.
        • et al.
        Decreased expression of kynurenine aminotransferase-I (KAT-I) in the substantia nigra of mice after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment.
        Neuroscience. 2004; 126: 899-914
        • Knyihar-Csillik E.
        • Chadaide Z.
        • Mihaly A.
        • Krisztin-Peva B.
        • Fenyo R.
        • Vecsei L.
        Effect of 6-hydroxydopamine treatment on kynurenine aminotransferase-I (KAT-I) immunoreactivity of neurons and glial cells in the rat substantia nigra.
        Acta Neuropathol. Aug 2006; 112: 127-137
        • Turski L.
        • Bressler K.
        • Rettig K.J.
        • Loschmann P.A.
        • Wachtel H.
        Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-D-aspartate antagonists.
        Nature. Jan 31 1991; 349: 414-418
        • Brouillet E.
        • Beal M.F.
        NMDA antagonists partially protect against MPTP induced neurotoxicity in mice.
        Neuroreport. Apr 1993; 4: 387-390
        • Srivastava R.
        • Brouillet E.
        • Beal M.F.
        • Storey E.
        • Hyman B.T.
        Blockade of 1-methyl-4-phenylpyridinium ion (MPP+) nigral toxicity in the rat by prior decortication or MK-801 treatment: a stereological estimate of neuronal loss.
        Neurobiol Aging. Jul-Aug 1993; 14: 295-301
        • Merino M.
        • Vizuete M.L.
        • Cano J.
        • Machado A.
        The non-NMDA glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione and 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline, but not NMDA antagonists, block the intrastriatal neurotoxic effect of MPP+.
        J Neurochem. Aug 1999; 73: 750-757
        • Storey E.
        • Hyman B.T.
        • Jenkins B.
        • Brouillet E.
        • Miller J.M.
        • Rosen B.R.
        • et al.
        1-Methyl-4-phenylpyridinium produces excitotoxic lesions in rat striatum as a result of impairment of oxidative metabolism.
        J Neurochem. May 1992; 58: 1975-1978
        • Rover S.
        • Cesura A.M.
        • Huguenin P.
        • Kettler R.
        • Szente A.
        Synthesis and biochemical evaluation of N-(4-phenylthiazol-2-yl)benzenesulfonamides as high-affinity inhibitors of kynurenine 3-hydroxylase.
        J Med Chem. Dec 19 1997; 40: 4378-4385
        • Urenjak J.
        • Obrenovitch T.P.
        Kynurenine 3-hydroxylase inhibition in rats: effects on extracellular kynurenic acid concentration and N-methyl-D-aspartate-induced depolarisation in the striatum.
        J Neurochem. Dec 2000; 75: 2427-2433
        • Moroni F.
        • Cozzi A.
        • Carpendo R.
        • Cipriani G.
        • Veneroni O.
        • Izzo E.
        Kynurenine 3-mono-oxygenase inhibitors reduce glutamate concentration in the extracellular spaces of the basal ganglia but not in those of the cortex or hippocampus.
        Neuropharmacology. May 2005; 48: 788-795
        • Miranda A.F.
        • Boegman R.J.
        • Beninger R.J.
        • Jhamandas K.
        Protection against quinolinic acid-mediated excitotoxicity in nigrostriatal dopaminergic neurons by endogenous kynurenic acid.
        Neuroscience. Jun 1997; 78: 967-975
        • Giorgini F.
        • Guidetti P.
        • Nguyen Q.
        • Bennett S.C.
        • Muchowski P.J.
        A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington disease.
        Nat Genet. May 2005; 37: 526-531
        • Vamos E.
        • Voros K.
        • Zadori D.
        • Vecsei L.
        • Klivenyi P.
        Neuroprotective effects of probenecid in a transgenic animal model of Huntington's disease.
        J Neural Transm. Sep 2009; 116: 1079-1086
        • Silva-Adaya D.
        • Perez-De La Cruz V.
        • Villeda-Hernandez J.
        • Carrillo-Mora P.
        • Gonzalez-Herrera I.G.
        • Garcia E.
        • et al.
        Protective effect of l-kynurenine and probenecid on 6-hydroxydopamine-induced striatal toxicity in rats: implications of modulating kynurenate as a protective strategy.
        Neurotoxicol Teratol. Oct 7 2010;
        • Carrillo-Mora P.
        • Mendez-Cuesta L.A.
        • Perez-De La Cruz V.
        • Fortoul-van Der Goes T.I.
        • Santamaria A.
        Protective effect of systemic L-kynurenine and probenecid administration on behavioural and morphological alterations induced by toxic soluble amyloid beta (25–35) in rat hippocampus.
        Behav Brain Res. Jul 11 2010; 210: 240-250
        • Foster A.C.
        • Willis C.L.
        • Tridgett R.
        Protection against N-methyl-D-aspartate receptor-mediated neuronal degeneration in rat brain by 7-chlorokynurenate and 3-amino-1-hydroxypyrrolid-2-one, antagonists at the allosteric site for glycine.
        Eur J Neurosci. 1990; 2: 270-277
        • Hartley D.M.
        • Monyer H.
        • Colamarino S.A.
        • Choi D.W.
        7-Chlorokynurenate blocks NMDA receptor-mediated neurotoxicity in murine cortical culture.
        Eur J Neurosci. 1990; 2: 291-295
        • Wu H.Q.
        • Lee S.C.
        • Schwarcz R.
        Systemic administration of 4-chlorokynurenine prevents quinolinate neurotoxicity in the rat hippocampus.
        Eur J Pharmacol. Mar 3 2000; 390: 267-274
        • Marosi M.
        • Nagy D.
        • Farkas T.
        • Kis Z.
        • Rozsa E.
        • Robotka H.
        • et al.
        A novel kynurenic acid analogue: a comparison with kynurenic acid. An in vitro electrophysiological study.
        J Neural Transm. Feb 2010; 117: 183-188
        • Fukui S.
        • Schwarcz R.
        • Rapoport S.I.
        • Takada Y.
        • Smith Q.R.
        Blood–brain barrier transport of kynurenines: implications for brain synthesis and metabolism.
        J Neurochem. Jun 1991; 56: 2007-2017
        • Zadori D.
        • Nyiri G.
        • Szonyi A.
        • Szatmari I.
        • Fulop F.
        • Toldi J.
        • et al.
        Neuroprotective effects of a novel kynurenic acid analogue in a transgenic mouse model of Huntington's disease.
        J Neural Transm. Dec 31 2010;
        • Fuvesi J.
        • Somlai C.
        • Nemeth H.
        • Varga H.
        • Kis Z.
        • Farkas T.
        • et al.
        Comparative study on the effects of kynurenic acid and glucosamine-kynurenic acid.
        Pharmacol Biochem Behav. Jan 2004; 77: 95-102
        • Gregoire L.
        • Rassoulpour A.
        • Guidetti P.
        • Samadi P.
        • Bedard P.J.
        • Izzo E.
        • et al.
        Prolonged kynurenine 3-hydroxylase inhibition reduces development of levodopa-induced dyskinesias in parkinsonian monkeys.
        Behav Brain Res. Jan 25 2008; 186: 161-167
        • Ouattara B.
        • Belkhir S.
        • Morissette M.
        • Dridi M.
        • Samadi P.
        • Gregoire L.
        • et al.
        Implication of NMDA receptors in the antidyskinetic activity of cabergoline, CI-1041, and Ro 61-8048 in MPTP monkeys with levodopa-induced dyskinesias.
        J Mol Neurosci. Jun 2009; 38: 128-142
        • Tamim M.K.
        • Samadi P.
        • Morissette M.
        • Gregoire L.
        • Ouattara B.
        • Levesque D.
        • et al.
        Effect of non-dopaminergic drug treatment on levodopa induced dyskinesias in MPTP monkeys: common implication of striatal neuropeptides.
        Neuropharmacology. Jan 2010; 58: 286-296
        • Widner B.
        • Laich A.
        • Sperner-Unterweger B.
        • Ledochowski M.
        • Fuchs D.
        Neopterin production, tryptophan degradation, and mental depression—what is the link?.
        Brain Behav Immun. Oct 2002; 16: 590-595
        • Molina J.A.
        • Jimenez-Jimenez F.J.
        • Gomez P.
        • Vargas C.
        • Navarro J.A.
        • Orti-Pareja M.
        • et al.
        Decreased cerebrospinal fluid levels of neutral and basic amino acids in patients with Parkinson's disease.
        J Neurol Sci. Sep 10 1997; 150: 123-127
        • Beal M.F.
        • Matson W.R.
        • Storey E.
        • Milbury P.
        • Ryan E.A.
        • Ogawa T.
        • et al.
        Kynurenic acid concentrations are reduced in Huntington's disease cerebral cortex.
        J Neurol Sci. Mar 1992; 108: 80-87
        • Jauch D.
        • Urbanska E.M.
        • Guidetti P.
        • Bird E.D.
        • Vonsattel J.P.
        • Whetsell Jr., W.O.
        • et al.
        Dysfunction of brain kynurenic acid metabolism in Huntington's disease: focus on kynurenine aminotransferases.
        J Neurol Sci. May 1995; 130: 39-47
        • Forrest C.M.
        • Mackay G.M.
        • Stoy N.
        • Spiden S.L.
        • Taylor R.
        • Stone T.W.
        • et al.
        Blood levels of kynurenines, interleukin-23 and soluble human leucocyte antigen-G at different stages of Huntington's disease.
        J Neurochem. Jan 2010; 112: 112-122
        • Stoy N.
        • Mackay G.M.
        • Forrest C.M.
        • Christofides J.
        • Egerton M.
        • Stone T.W.
        • et al.
        Tryptophan metabolism and oxidative stress in patients with Huntington's disease.
        J Neurochem. May 2005; 93: 611-623
        • Rejdak K.
        • Bartosik-Psujek H.
        • Dobosz B.
        • Kocki T.
        • Grieb P.
        • Giovannoni G.
        • et al.
        Decreased level of kynurenic acid in cerebrospinal fluid of relapsing-onset multiple sclerosis patients.
        Neurosci Lett. Oct 4 2002; 331: 63-65
        • Rejdak K.
        • Petzold A.
        • Kocki T.
        • Kurzepa J.
        • Grieb P.
        • Turski W.A.
        • et al.
        Astrocytic activation in relation to inflammatory markers during clinical exacerbation of relapsing-remitting multiple sclerosis.
        J Neural Transm. 2007; 114: 1011-1015
        • Hartai Z.
        • Klivenyi P.
        • Janaky T.
        • Penke B.
        • Dux L.
        • Vecsei L.
        Kynurenine metabolism in multiple sclerosis.
        Acta Neurol Scand. Aug 2005; 112: 93-96
        • Widner B.
        • Leblhuber F.
        • Walli J.
        • Tilz G.P.
        • Demel U.
        • Fuchs D.
        Tryptophan degradation and immune activation in Alzheimer's disease.
        J Neural Transm. 2000; 107: 343-353
        • Baran H.
        • Jellinger K.
        • Deecke L.
        Kynurenine metabolism in Alzheimer's disease.
        J Neural Transm. 1999; 106: 165-181