Advertisement
Research Article| Volume 310, ISSUE 1-2, P90-95, November 15, 2011

Dopamine-depletion and increased α-synuclein load induce degeneration of cortical cholinergic fibers in mice

  • Éva M. Szegő
    Correspondence
    Corresponding author at: Department of NeuroDegeneration and Restorative Research, Georg-August University; DFG Research Center for Molecular Physiology of the Brain (CMPB), Göttingen, Waldweg 33, D-37073, Germany. Tel.: +49 551 3913547; fax: +49 551 3913541.
    Affiliations
    Department of NeuroDegeneration and Restorative Research, Georg-August University, DFG Research Center: Molecular Physiology of the Brain (CMPB), Göttingen, 37073, Germany
    Search for articles by this author
  • Ellen Gerhardt
    Affiliations
    Department of NeuroDegeneration and Restorative Research, Georg-August University, DFG Research Center: Molecular Physiology of the Brain (CMPB), Göttingen, 37073, Germany
    Search for articles by this author
  • Tiago F. Outeiro
    Affiliations
    Department of NeuroDegeneration and Restorative Research, Georg-August University, DFG Research Center: Molecular Physiology of the Brain (CMPB), Göttingen, 37073, Germany
    Search for articles by this author
  • Pawel Kermer
    Affiliations
    Department of NeuroDegeneration and Restorative Research, Georg-August University, DFG Research Center: Molecular Physiology of the Brain (CMPB), Göttingen, 37073, Germany

    Department of Neurology, Georg-August University, DFG Research Center: Molecular Physiology of the Brain (CMPB), Göttingen, 37073, Germany
    Search for articles by this author

      Abstract

      Cognitive dysfunction can be common among Parkinson's disease (PD) patients, and multiplication of the gene α-synuclein (αsyn) increases the risk of dementia. Here, we studied the role of dopamine-depletion and increased αsyn load and aggregation on cholinergic structures in vivo. Wild-type (WT) and mice with A30P αsyn overexpression were treated subacutely with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and the number of cholinergic cells in their nucleus basalis magnocellularis-substantia innominata (NBM-SI), their cortical fiber density and their expression of different genes 1 day or 90 days after the last MPTP-injection were measured. Long-term dopamine depletion decreased the expression of choline acetyl transferase (ChAT) in the NBM-SI of WT mice, but no neuron loss was observed. In contrast, cortical cholinergic fiber density was decreased three months after MPTP-injection. Increased brain-derived neurotrophic factor expression could maintain cholinergic functions under these conditions. Expression of A30P αsyn in six-months-old transgenic mice resulted in decreased tyrosine receptor kinase B expression, and lower cortical cholinergic fiber density. Dopamine-depletion by MPTP induced cholinergic cell loss in the NBM-SI and increased cortical fiber loss. Our findings may explain why cholinergic cells are more vulnerable in PD, leading to an increased probability of dementia.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lim S.Y.
        • Fox S.H.
        • Lang A.E.
        Overview of the extranigral aspects of Parkinson disease.
        Arch Neurol. 2009; 66: 167-172
        • Dauer W.
        • Przedborski S.
        Parkinson's disease: mechanisms and models.
        Neuron. 2003; 39: 889-909
        • Aarsland D.
        • Andersen K.
        • Larsen J.P.
        • Lolk A.
        • Kragh-Sorensen P.
        Prevalence and characteristics of dementia in Parkinson disease — an 8-year prospective study.
        Arch Neurol. 2003; 60: 387-392
        • Lippa C.F.
        • Smith T.W.
        • Perry E.
        Dementia with Lewy bodies: choline acetyltransferase parallels nucleus basalis pathology.
        J Neural Transm. 1999; 106: 525-535
        • Braak H.
        • Del Tredici K.
        • Rub U.
        • de Vos R.A.I.
        • Steur E.
        • Braak E.
        Staging of brain pathology related to sporadic Parkinson's disease.
        Neurobiol Aging. 2003; 24: 197-211
        • Bohnen N.I.
        • Kaufer D.I.
        • Ivanco L.S.
        • Hendrickson R.
        • Ivanco D.E.
        • Lopresti B.J.
        • et al.
        Cholinergic denervation is associated with more severe depression in Parkinson's disease.
        Neurology. 2005; 64 (A222-A)
        • Mattila P.M.
        • Rinne J.O.
        • Helenius H.
        • Dickson D.W.
        • Roytta M.
        Alpha-synuclein-immunoreactive cortical Lewy bodies are associated with cognitive impairment in Parkinson's disease.
        Acta Neuropathol. 2000; 100: 285-290
        • Mattila P.M.
        • Roytta M.
        • Torikka H.
        • Dickson D.W.
        • Rinne J.O.
        Cortical Lewy bodies and Alzheimer-type changes in patients with Parkinson's disease.
        Acta Neuropathol. 1998; 95: 576-582
        • Hurtig H.I.
        • Trojanowski J.Q.
        • Galvin J.
        • Ewbank D.
        • Schmidt M.L.
        • Lee V.M.Y.
        • et al.
        Alpha-synuclein cortical Lewy bodies correlate with dementia in Parkinson's disease.
        Neurology. 2000; 54: 1916-1921
        • Sulzer D.
        Clues to how alpha-synuclein damages neurons in Parkinson's disease.
        Mov Disord. 2010; 25: S27-S31
        • Jo E.J.
        • McLaurin J.
        • Yip C.M.
        • St George-Hyslop P.
        • Fraser P.E.
        Alpha-synuclein membrane interactions and lipid specificity.
        J Biol Chem. 2000; 275: 34328-34334
        • Inzelberg R.
        • Polyniki A.
        Are genetic and sporadic Parkinson's disease patients equally susceptible to develop dementia?.
        J Neurol Sci. 2010; 289: 23-26
        • Obi T.
        • Nishioka K.
        • Ross O.A.
        • Terada T.
        • Yamazaki K.
        • Sugiura A.
        • et al.
        Clinicopathologic study of a SNCA gene duplication patient with Parkinson disease and dementia.
        Neurology. 2008; 70: 238-241
        • Ahmad S.O.
        • Park J.H.
        • Stenho-Bittel L.
        • Lau Y.S.
        Effects of endurance exercise on ventral tegmental area neurons in the chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and probenecid-treated mice.
        Neurosci Lett. 2009; 450: 102-105
        • Jacksonlewis V.
        • Jakowec M.
        • Burke R.E.
        • Przedborski S.
        Time-course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.
        Neurodegeneration. 1995; 4: 257-269
        • Luft A.R.
        • Schwarz S.
        Dopaminergic signals in primary motor cortex.
        Int J Dev Neurosci. 2009; 27: 415-421
        • Lisman J.E.
        • Grace A.A.
        The hippocampal-VTA loop: controlling the entry of information into long-term memory.
        Neuron. 2005; 46: 703-713
        • Zhang Z.-W.
        • Burke M.W.
        • Calakos N.
        • Beaulieu J.-M.
        • Vaucher E.
        Confocal Analysis of Cholinergic and Dopaminergic Inputs onto Pyramidal Cells in the Prefrontal Cortex of Rodents.
        Front Neuroanat. 2010; 4: 21
        • Yang C.R.
        • Mogenson G.J.
        Dopaminergic modulation of cholinergic responses in rat medial prefrontal cortex — an electrophysiological study.
        Brain Res. 1990; 524: 271-281
        • Kahle P.J.
        • Neumann M.
        • Ozmen L.
        • Schulz J.B.
        • Kretzschmar H.A.
        • Haass C.
        Accumulation of detergent-insoluble alpha-synuclein in Lewy body diseases and transgenic mice.
        J Neurochem. 2001; 78: 112-113
        • Kahle P.J.
        • Neumann M.
        • Ozmen L.
        • Muller V.
        • Jacobsen H.
        • Schindzielorz A.
        • et al.
        Subcellular localization of wild-type and Parkinson's disease-associated mutant alpha-synuclein in human and transgenic mouse brain.
        J Neurosci. 2000; 20: 6365-6373
        • Palkovits M.
        • Brownstein M.J.
        Maps and Guide to Microdissection of the Rat Brain.
        Elsevier Science Publishing Co., New York1988
        • Kowsky S.
        • Poppelmeyer C.
        • Kramer E.R.
        • Falkenburger B.H.
        • Kruse A.
        • Klein R.
        • et al.
        RET signaling does not modulate MPTP toxicity but is required for regeneration of dopaminergic axon terminals.
        Proc Natl Acad Sci USA. 2007; 104: 20049-20054
        • Szego E.M.
        • Barabas K.
        • Balog J.
        • Szilagyi N.
        • Korach K.S.
        • Juhasz G.
        • et al.
        Estrogen induces estrogen receptor alpha-dependent cAMP response element-binding protein phosphorylation via mitogen activated protein kinase pathway in basal forebrain cholinergic neurons in vivo.
        J Neurosci. 2006; 26: 4104-4110
        • Hedreen J.C.
        • Bacon S.J.
        • Price D.L.
        A modified histochemical technique to visualize acetylcholinesterase-containing axons.
        J Histochem Cytochem. 1985; 33: 134-140
        • Szego É.M.
        • Csorba A.
        • Janáky T.
        • Kékesi K.A.
        • Ábrahám I.M.
        • Mórotz G.M.
        • et al.
        Effects of estrogen on beta-Amyloid-induced cholinergic cell death in the nucleus basalis magnocellularis.
        Neuroendocrinology. 2010;
        • Paxinos G.
        • Franklin K.B.J.
        The Mouse Brain in Stereotaxic Coordinates.
        Academic Press, San Diego2001
        • Rathke-Hartlieb S.
        • Kahle P.J.
        • Neumann M.
        • Ozmen L.
        • Haid S.
        • Okochi M.
        • et al.
        Sensitivity to MPTP is not increased in Parkinson's disease-associated mutant alpha-synuclein transgenic mice.
        J Neurochem. 2001; 77: 1181-1184
        • Szegő E.M.
        • Csorba A.
        • Janáky T.
        • Kékesi K.A.
        • Abrahám I.M.
        • Mórotz G.M.
        • et al.
        Effects of estrogen on beta-amyloid-induced cholinergic cell death in the nucleus basalis magnocellularis.
        Neuroendocrinology. 2010; 93: 90-105
        • Wenk G.L.
        The nucleus basalis magnocellularis cholinergic system: one hundred years of progress.
        Neurobiol Learn Mem. 1997; 67: 85-95
        • Venda L.L.
        • Cragg S.J.
        • Buchman V.L.
        • Wade-Martins R.
        Alpha-synuclein and dopamine at the crossroads of Parkinson's disease.
        Trends Neurosci. 2004; 33: 559-568
        • Sidhu A.
        • Wersinger C.
        • Moussa C.E.H.
        • Vernier P.
        The role of alpha-synuclein in both neuroprotection and neurodegeneration.
        Ann N Y Acad Sci. 2004; 1035: 250-270
        • Shin C.W.
        • Kim H.J.
        • Park S.S.
        • Kim S.Y.
        • Kim J.Y.
        • Icon B.S.
        Two Parkinson's disease patients with alpha-synuclein gene duplication and rapid cognitive decline.
        Mov Disord. 2010; 25: 957-959
        • Ostrerova N.
        • Petrucelli L.
        • Farrer M.
        • Mehta N.
        • Choi P.
        • Hardy J.
        • et al.
        Alpha-synuclein shares physical and functional homology with 14-3-3 proteins.
        J Neurosci. 1999; 19: 5782-5791
        • Obsilova V.
        • Silhan J.
        • Boura E.
        • Teisinger J.
        • Obsil T.
        14-3-3 proteins: a family of versatile molecular regulators.
        Physiol Res. 2008; 57: S11-S21
        • Jeanclos E.M.
        • Lin L.
        • Treuil M.W.
        • Rao J.
        • DeCoster M.A.
        • Anand R.
        The chaperone protein 14-3-3 eta interacts with the nicotinic acetylcholine receptor alpha 4 subunit — evidence for a dynamic role in subunit stabilization.
        J Biol Chem. 2001; 276: 28281-28290
        • Lee C.W.
        • Han J.Z.
        • Bamburg J.R.
        • Han L.
        • Lynn R.
        • Zheng J.Q.
        Regulation of acetylcholine receptor clustering by ADF/cofilin-directed vesicular trafficking.
        Nat Neurosci. 2009; 12: 848-856
        • Yacoubian T.A.
        • Slone S.R.
        • Harrington A.J.
        • Hamamichi S.
        • Schieltz J.M.
        • Caldwell K.A.
        • et al.
        Differential neuroprotective effects of 14-3-3 proteins in models of Parkinson's disease.
        Cell Death Dis. 2010; 1: e2
        • Mufson E.J.
        • Kroin J.S.
        • Sendera T.J.
        • Sobreviela T.
        Distribution and retrograde transport of trophic factors in the central nervous system: functional implications for the treatment of neurodegenerative diseases.
        Prog Neurobiol. 1999; 57: 451-484
        • Mufson E.J.
        • Counts S.E.
        • Ginsberg S.D.
        Gene expression profiles of cholinergic nucleus basalis neurons in Alzheimer's disease.
        Neurochem Res. 2002; 27: 1035-1048
        • Schindowski K.
        • Belarbi K.
        • Buee L.
        Neurotrophic factors in Alzheimer's disease: role of axonal transport.
        Genes Brain Behav. 2008; 7: 43-56
        • Nonomura T.
        • Nishio C.
        • Lindsay R.M.
        • Hatanaka H.
        Cultured basal forebrain cholinergic neurons from postnatal rats show both overlapping and nonoverlapping responses to the neurotrophins.
        Brain Res. 1995; 683: 129-139
        • Brown D.A.
        Muscarinic Acetylcholine Receptors (mAChRs) in the nervous system: some functions and mechanisms.
        J Mol Neurosci. 2010; 41: 340-346
        • Ginsberg S.D.
        • Che S.L.
        • Wuu J.
        • Counts S.E.
        • Mufson E.J.
        Down regulation of trk but not p75(NTR) gene expression in single cholinergic basal forebrain neurons mark the progression of Alzheimer's disease.
        J Neurochem. 2006; 97: 475-487
        • Knusel B.
        • Gao H.
        Neurotrophins and Alzheimer's disease: beyond the cholinergic neurons.
        Life Sci. 1996; 58: 2019-2027
        • Umegaki H.
        • Munoz J.
        • Meyer R.C.
        • Spangler E.L.
        • Yoshimura J.
        • Ikari H.
        • et al.
        Involvement of dopamine D-2 receptors in complex maze learning and acetylcholine release in ventral hippocampus of rats.
        Neuroscience. 2001; 103: 27-33
        • El-Ghundi M.
        • O'Dowd B.F.
        • George S.R.
        Insights into the role of dopamine receptor systems in learning and memory.
        Rev Neurosci. 2007; 18: 37-66
        • Day J.C.
        • Fibiger H.C.
        Dopaminergic regulation of septohippocampal cholinergic neurons.
        J Neurochem. 1994; 63: 2086-2092
        • Di Cara B.
        • Panayi F.
        • Gobert A.
        • Dekeyne A.
        • Sicard D.
        • De Groote L.
        • et al.
        Activation of dopamine D-1 receptors enhances cholinergic transmission and social cognition: a parallel dialysis and behavioural study in rats.
        Int J Neuropsychopharmacol. 2007; 10: 383-399
        • Aliaga E.
        • Silhol M.
        • Bonneau N.
        • Maurice T.
        • Arancibia S.
        • Tapia-Arancibia L.
        Dual response of BDNF to sublethal concentrations of beta-amyloid peptides in cultured cortical neurons.
        Neurobiol Dis. 2010; 37: 208-217