Advertisement
Review article| Volume 306, ISSUE 1-2, P1-8, July 15, 2011

Converging environmental and genetic pathways in the pathogenesis of Parkinson's disease

  • Lena F. Burbulla
    Affiliations
    Laboratory of Functional Neurogenomics, Center of Neurology, Hertie-Institute for Clinical Brain Research and German Research Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany

    Graduate School of Cellular & Molecular Neuroscience, University of Tübingen, Tübingen, Germany
    Search for articles by this author
  • Rejko Krüger
    Correspondence
    Corresponding author at: Laboratory of Functional Neurogenomics, Center of Neurology, Hertie-Institute for Clinical Brain Research and German Research Center for Neurodegenerative Diseases (DZNE), Hopepe-Seyler-Str.,3, 72076 Tübingen, Germany. Tel.: +49 7071 2982141; fax: +49 7071 295260.
    Affiliations
    Laboratory of Functional Neurogenomics, Center of Neurology, Hertie-Institute for Clinical Brain Research and German Research Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
    Search for articles by this author
Published:April 22, 2011DOI:https://doi.org/10.1016/j.jns.2011.04.005

      Abstract

      As a prototypic neurodegenerative disorder Parkinson's disease (PD) is characterized by the progressive loss of specific neuronal subpopulations leading to a late-onset movement disorder. Based on familial forms of PD, to date a significant number of genes were identified that allowed first insight into the molecular pathogenesis of this common movement disorder. These pathways include impaired protein degradation and subsequent aggregation within neuronal cells and impaired mitochondrial function followed by energy depletion due to oxidative stress leading to cell death. The respective disease models were supported by pathoanatomical and biochemical findings in brains of sporadic PD patients without apparent genetic contribution to pathogenesis. Indeed recent genetic and epidemiological studies hint to a complex interplay of genetic susceptibility factors and environmental risk factors to converge to processes of pathological protein accumulation and mitochondrial damage that trigger neurodegeneration in PD. Therefore large-scale geneticoepidemiological studies combining genetic whole genome approaches with a detailed ascertainment of environmental exposures are expected to provide important clues to decipher the complexity of neurodegeneration of this most frequent neurodegenerative movement disorder.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Dorsey E.R.
        • Constantinescu R.
        • Thompson J.P.
        • Biglan K.M.
        • Holloway R.G.
        • Kieburtz K.
        • et al.
        Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030.
        Neurology. 2007; 68: 384-386
        • Alves G.
        • Wentzel-Larsen T.
        • Aarsland D.
        • Larsen J.P.
        Progression of motor impairment and disability in Parkinson disease: a population-based study.
        Neurology. 2005; 65: 1436-1441
        • Stern M.B.
        • Doty R.L.
        • Dotti M.
        • Corcoran P.
        • Crawford D.
        • McKeown D.A.
        • et al.
        Olfactory function in Parkinson's disease subtypes.
        Neurology. 1994; 44: 266-268
        • Katayama Y.
        • Kasai M.
        • Oshima H.
        • Fukaya C.
        • Yamamoto T.
        • Ogawa K.
        • et al.
        Subthalamic nucleus stimulation for Parkinson disease: benefits observed in levodopa-intolerant patients.
        J Neurosurg. 2001; 95: 213-221
        • Braak H.
        • Del Tredici K.
        • Rub U.
        • de Vos R.A.
        • Jansen Steur E.N.
        • Braak E.
        Staging of brain pathology related to sporadic Parkinson's disease.
        Neurobiol Aging. 2003; 24: 197-211
        • Di Rocco A.
        • Molinari S.P.
        • Kollmeier B.
        • Yahr M.D.
        Parkinson's disease: progression and mortality in the L-DOPA era.
        Adv Neurol. 1996; 69: 3-11
        • Hughes A.J.
        • Daniel S.E.
        • Kilford L.
        • Lees A.J.
        Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases.
        J Neurol Neurosurg Psychiatry. 1992; 55: 181-184
        • Langston J.W.
        • Ballard P.
        • Tetrud J.W.
        • Irwin I.
        Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis.
        Science. 1983; 219: 979-980
        • Jenner P.
        • Marsden C.D.
        The actions of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in animals as a model of Parkinson's disease.
        J Neural Transm Suppl. 1986; 20: 11-39
        • Matzler W.
        • Nagele T.
        • Gasser T.
        • Kruger R.
        Acute parkinsonism with corresponding lesions in the basal ganglia after heroin abuse.
        Neurology. 2007; 68: 414
        • Lopez-Alberola R.
        • Georgiou M.
        • Sfakianakis G.N.
        • Singer C.
        • Papapetropoulos S.
        Contemporary Encephalitis Lethargica: phenotype, laboratory findings and treatment outcomes.
        J Neurol. 2009; 256: 396-404
        • Dick F.D.
        • De Palma G.
        • Ahmadi A.
        • Scott N.W.
        • Prescott G.J.
        • Bennett J.
        • et al.
        Environmental risk factors for Parkinson's disease and parkinsonism: the Geoparkinson study.
        Occup Environ Med. 2007; 64: 666-672
        • Elbaz A.
        • Clavel J.
        • Rathouz P.J.
        • Moisan F.
        • Galanaud J.P.
        • Delemotte B.
        • et al.
        Professional exposure to pesticides and Parkinson disease.
        Ann Neurol. 2009; 66: 494-504
        • Gorell J.M.
        • Johnson C.C.
        • Rybicki B.A.
        • Peterson E.L.
        • Richardson R.J.
        The risk of Parkinson's disease with exposure to pesticides, farming, well water, and rural living.
        Neurology. 1998; 50: 1346-1350
        • Ritz B.
        • Ascherio A.
        • Checkoway H.
        • Marder K.S.
        • Nelson L.M.
        • Rocca W.A.
        • et al.
        Pooled analysis of tobacco use and risk of Parkinson disease.
        Arch Neurol. 2007; 64: 990-997
        • Ascherio A.
        • Weisskopf M.G.
        • O'Reilly E.J.
        • McCullough M.L.
        • Calle E.E.
        • Rodriguez C.
        • et al.
        Coffee consumption, gender, and Parkinson's disease mortality in the cancer prevention study II cohort: the modifying effects of estrogen.
        Am J Epidemiol. 2004; 160: 977-984
        • Troiano A.R.
        • Elbaz A.
        • Lohmann E.
        • Belarbi S.
        • Vidailhet M.
        • Bonnet A.M.
        • et al.
        Low disease risk in relatives of north african lrrk2 Parkinson disease patients.
        Neurology. 2010; 75: 1118-1119
        • Goldwurm S.
        • Zini M.
        • Mariani L.
        • Tesei S.
        • Miceli R.
        • Sironi F.
        • et al.
        Evaluation of LRRK2 G2019S penetrance: relevance for genetic counseling in Parkinson disease.
        Neurology. 2007; 68: 1141-1143
        • Di Fonzo A.
        • Rohe C.F.
        • Ferreira J.
        • Chien H.F.
        • Vacca L.
        • Stocchi F.
        • et al.
        A frequent LRRK2 gene mutation associated with autosomal dominant Parkinson's disease.
        Lancet. 2005; 365: 412-415
        • Latourelle J.C.
        • Sun M.
        • Lew M.F.
        • Suchowersky O.
        • Klein C.
        • Golbe L.I.
        • et al.
        The Gly2019Ser mutation in LRRK2 is not fully penetrant in familial Parkinson's disease: the GenePD study.
        BMC Med. 2008; 6: 32
        • Maraganore D.M.
        • de Andrade M.
        • Elbaz A.
        • Farrer M.J.
        • Ioannidis J.P.
        • Kruger R.
        • et al.
        Collaborative analysis of alpha-synuclein gene promoter variability and Parkinson disease.
        JAMA. 2006; 296: 661-670
        • Mueller J.C.
        • Fuchs J.
        • Hofer A.
        • Zimprich A.
        • Lichtner P.
        • Illig T.
        • et al.
        Multiple regions of alpha-synuclein are associated with Parkinson's disease.
        Ann Neurol. 2005; 57: 535-541
        • Foroud T.
        • Uniacke S.K.
        • Liu L.
        • Pankratz N.
        • Rudolph A.
        • Halter C.
        • et al.
        Heterozygosity for a mutation in the parkin gene leads to later onset Parkinson disease.
        Neurology. 2003; 60: 796-801
        • Abou-Sleiman P.M.
        • Muqit M.M.
        • McDonald N.Q.
        • Yang Y.X.
        • Gandhi S.
        • Healy D.G.
        • et al.
        A heterozygous effect for PINK1 mutations in Parkinson's disease?.
        Ann Neurol. 2006; 60: 414-419
        • Kruger R.
        LRRK2 in Parkinson's disease—drawing the curtain of penetrance: a commentary.
        BMC Med. 2008; 6: 33
        • Elbaz A.
        • Ross O.A.
        • Ioannidis J.P.
        • Soto-Ortolaza A.I.
        • Moisan F.
        • Aasly J.
        • et al.
        Independent and joint effects of the MAPT and SNCA genes in Parkinson disease.
        Ann Neurol. 2011; 69: 778-792
        • Maraganore D.M.
        • Hernandez D.G.
        • Singleton A.B.
        • Farrer M.J.
        • McDonnell S.K.
        • Hutton M.L.
        • et al.
        Case–control study of the extended tau gene haplotype in Parkinson's disease.
        Ann Neurol. 2001; 50: 658-661
        • Simon-Sanchez J.
        • Schulte C.
        • Bras J.M.
        • Sharma M.
        • Gibbs J.R.
        • Berg D.
        • et al.
        Genome-wide association study reveals genetic risk underlying Parkinson's disease.
        Nat Genet. 2009; 41: 1308-1312
        • Saad M.
        • Lesage S.
        • Saint-Pierre A.
        • Corvol J.C.
        • Zelenika D.
        • Lambert J.C.
        • et al.
        Genome-wide association study confirms BST1 and suggests a locus on 12q24 as the risk loci for Parkinson's disease in the European population.
        Hum Mol Genet. 2011; 20: 615-627
        • Nalls M.A.
        • Plagnol V.
        • Hernandez D.G.
        • Sharma M.
        • Sheerin U.M.
        • Saad M.
        • et al.
        Imputation of sequence variants for identification of genetic risks for Parkinson's disease: a meta-analysis of genome-wide association studies.
        Lancet. 2011; 377: 641-649
        • Polymeropoulos M.H.
        • Lavedan C.
        • Leroy E.
        • Ide S.E.
        • Dehejia A.
        • Dutra A.
        • et al.
        Mutation in the alpha-synuclein gene identified in families with Parkinson's disease.
        Science. 1997; 276: 2045-2047
        • Ueda K.
        • Fukushima H.
        • Masliah E.
        • Xia Y.
        • Iwai A.
        • Yoshimoto M.
        • et al.
        Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease.
        Proc Natl Acad Sci USA. 1993; 90: 11282-11286
        • George J.M.
        • Jin H.
        • Woods W.S.
        • Clayton D.F.
        Characterization of a novel protein regulated during the critical period for song learning in the zebra finch.
        Neuron. 1995; 15: 361-372
        • Kruger R.
        • Kuhn W.
        • Muller T.
        • Woitalla D.
        • Graeber M.
        • Kosel S.
        • et al.
        Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease.
        Nat Genet. 1998; 18: 106-108
        • Zarranz J.J.
        • Alegre J.
        • Gomez-Esteban J.C.
        • Lezcano E.
        • Ros R.
        • Ampuero I.
        • et al.
        The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia.
        Ann Neurol. 2004; 55: 164-173
        • Polymeropoulos M.H.
        Autosomal dominant Parkinson's disease and alpha-synuclein.
        Ann Neurol. 1998; 44: S63-S64
        • Kruger R.
        • Kuhn W.
        • Leenders K.L.
        • Sprengelmeyer R.
        • Muller T.
        • Woitalla D.
        • et al.
        Familial parkinsonism with synuclein pathology: clinical and PET studies of A30P mutation carriers.
        Neurology. 2001; 56: 1355-1362
        • Duda J.E.
        • Lee V.M.
        • Trojanowski J.Q.
        Neuropathology of synuclein aggregates.
        J Neurosci Res. 2000; 61: 121-127
        • Seidel K.S.L.
        • Nuber S.
        • Petrasch-Parwez E.
        • Gierga K.
        • Wszolek Z.
        • Dickson D.
        • Gai W.
        • Bornemann A.
        • Riess O.
        • Rami A.
        • den Dunnen W.
        • Deller T.
        • Rüb U.
        • Krüger R.
        First appraisal of brain pathology owing to A30P mutant alpha-synuclein.
        Ann Neurol. 2010; 67: 684-689
        • Berg D.
        • Niwar M.
        • Maass S.
        • Zimprich A.
        • Moller J.C.
        • Wuellner U.
        • et al.
        Alpha-synuclein and Parkinson's disease: implications from the screening of more than 1,900 patients.
        Mov Disord. 2005; 20: 1191-1194
        • Singleton A.B.
        • Farrer M.
        • Johnson J.
        • Singleton A.
        • Hague S.
        • Kachergus J.
        • et al.
        alpha-Synuclein locus triplication causes Parkinson's disease.
        Science. 2003; 302: 841
        • Chartier-Harlin M.C.
        • Kachergus J.
        • Roumier C.
        • Mouroux V.
        • Douay X.
        • Lincoln S.
        • et al.
        Alpha-synuclein locus duplication as a cause of familial Parkinson's disease.
        Lancet. 2004; 364: 1167-1169
        • Nishioka K.
        • Hayashi S.
        • Farrer M.J.
        • Singleton A.B.
        • Yoshino H.
        • Imai H.
        • et al.
        Clinical heterogeneity of alpha-synuclein gene duplication in Parkinson's disease.
        Ann Neurol. 2006; 59: 298-309
        • Cronin K.D.
        • Ge D.
        • Manninger P.
        • Linnertz C.
        • Rossoshek A.
        • Orrison B.M.
        • et al.
        Expansion of the Parkinson disease-associated SNCA-Rep1 allele upregulates human alpha-synuclein in transgenic mouse brain.
        Hum Mol Genet. 2009; 18: 3274-3285
        • Chiba-Falek O.
        • Nussbaum R.L.
        Effect of allelic variation at the NACP-Rep1 repeat upstream of the alpha-synuclein gene (SNCA) on transcription in a cell culture luciferase reporter system.
        Hum Mol Genet. 2001; 10: 3101-3109
        • Sotiriou S.
        • Gibney G.
        • Baxevanis A.D.
        • Nussbaum R.L.
        A single nucleotide polymorphism in the 3′UTR of the SNCA gene encoding alpha-synuclein is a new potential susceptibility locus for Parkinson disease.
        Neurosci Lett. 2009; 461: 196-201
        • Helgadottir A.
        • Thorleifsson G.
        • Magnusson K.P.
        • Gretarsdottir S.
        • Steinthorsdottir V.
        • Manolescu A.
        • et al.
        The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm.
        Nat Genet. 2008; 40: 217-224
        • Myhre R.
        • Toft M.
        • Kachergus J.
        • Hulihan M.M.
        • Aasly J.O.
        • Klungland H.
        • et al.
        Multiple alpha-synuclein gene polymorphisms are associated with Parkinson's disease in a Norwegian population.
        Acta Neurol Scand. 2008; 118: 320-327
        • Fuchs J.
        • Tichopad A.
        • Golub Y.
        • Munz M.
        • Schweitzer K.J.
        • Wolf B.
        • et al.
        Genetic variability in the SNCA gene influences alpha-synuclein levels in the blood and brain.
        FASEB J. 2008; 22: 1327-1334
        • Mata I.F.
        • Shi M.
        • Agarwal P.
        • Chung K.A.
        • Edwards K.L.
        • Factor S.A.
        • et al.
        SNCA variant associated with Parkinson disease and plasma alpha-synuclein level.
        Arch Neurol. 2010; 67: 1350-1356
        • Ciechanover A.
        The ubiquitin–proteasome proteolytic pathway.
        Cell. 1994; 79: 13-21
        • Zhang Y.
        • Dawson V.L.
        • Dawson T.M.
        Oxidative stress and genetics in the pathogenesis of Parkinson's disease.
        Neurobiol Dis. 2000; 7: 240-250
        • Hashimoto M.
        • Takeda A.
        • Hsu L.J.
        • Takenouchi T.
        • Masliah E.
        Role of cytochrome c as a stimulator of alpha-synuclein aggregation in Lewy body disease.
        J Biol Chem. 1999; 274: 28849-28852
        • Kitada T.
        • Asakawa S.
        • Hattori N.
        • Matsumine H.
        • Yamamura Y.
        • Minoshima S.
        • et al.
        Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism.
        Nature. 1998; 392: 605-608
        • Shimura H.
        • Hattori N.
        • Kubo S.
        • Mizuno Y.
        • Asakawa S.
        • Minoshima S.
        • et al.
        Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase.
        Nat Genet. 2000; 25: 302-305
        • Um J.W.
        • Im E.
        • Lee H.J.
        • Min B.
        • Yoo L.
        • Yoo J.
        • et al.
        Parkin directly modulates 26S proteasome activity.
        J Neurosci. 2010; 30: 11805-11814
        • Olzmann J.A.
        • Chin L.S.
        Parkin-mediated K63-linked polyubiquitination: a signal for targeting misfolded proteins to the aggresome–autophagy pathway.
        Autophagy. 2008; 4: 85-87
        • Lim K.L.
        • Chew K.C.
        • Tan J.M.
        • Wang C.
        • Chung K.K.
        • Zhang Y.
        • et al.
        Parkin mediates nonclassical, proteasomal-independent ubiquitination of synphilin-1: implications for Lewy body formation.
        J Neurosci. 2005; 25: 2002-2009
        • Tong Y.
        • Yamaguchi H.
        • Giaime E.
        • Boyle S.
        • Kopan R.
        • Kelleher III, R.J.
        • et al.
        Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of alpha-synuclein, and apoptotic cell death in aged mice.
        Proc Natl Acad Sci USA. 2010; 107: 9879-9884
        • Mortiboys H.
        • Johansen K.K.
        • Aasly J.O.
        • Bandmann O.
        Mitochondrial impairment in patients with Parkinson disease with the G2019S mutation in LRRK2.
        Neurology. 2010; 75: 2017-2020
        • Nguyen H.N.
        • Byers B.
        • Cord B.
        • Shcheglovitov A.
        • Byrne J.
        • Gujar P.
        • et al.
        LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress.
        Cell Stem Cell. 2011; 8: 267-280
        • Norris E.H.
        • Uryu K.
        • Leight S.
        • Giasson B.I.
        • Trojanowski J.Q.
        • Lee V.M.
        Pesticide exposure exacerbates alpha-synucleinopathy in an A53T transgenic mouse model.
        Am J Pathol. 2007; 170: 658-666
        • Hoglinger G.U.
        • Michel P.P.
        • Champy P.
        • Feger J.
        • Hirsch E.C.
        • Ruberg M.
        • et al.
        Experimental evidence for a toxic etiology of tropical parkinsonism.
        Mov Disord. 2005; 20: 118-119
        • Manning-Bog A.B.
        • McCormack A.L.
        • Li J.
        • Uversky V.N.
        • Fink A.L.
        • Di Monte D.A.
        The herbicide paraquat causes up-regulation and aggregation of alpha-synuclein in mice: paraquat and alpha-synuclein.
        J Biol Chem. 2002; 277: 1641-1644
        • Flynn M.R.
        • Susi P.
        Neurological risks associated with manganese exposure from welding operations—a literature review.
        Int J Hyg Environ Health. 2009; 212: 459-469
        • McNaught K.S.
        • Belizaire R.
        • Jenner P.
        • Olanow C.W.
        • Isacson O.
        Selective loss of 20S proteasome alpha-subunits in the substantia nigra pars compacta in Parkinson's disease.
        Neurosci Lett. 2002; 326: 155-158
        • McNaught K.S.
        • Mytilineou C.
        • Jnobaptiste R.
        • Yabut J.
        • Shashidharan P.
        • Jennert P.
        • et al.
        Impairment of the ubiquitin–proteasome system causes dopaminergic cell death and inclusion body formation in ventral mesencephalic cultures.
        J Neurochem. 2002; 81: 301-306
        • McNaught K.S.
        • Perl D.P.
        • Brownell A.L.
        • Olanow C.W.
        Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson's disease.
        Ann Neurol. 2004; 56: 149-162
        • Dauer W.
        • Kholodilov N.
        • Vila M.
        • Trillat A.C.
        • Goodchild R.
        • Larsen K.E.
        • et al.
        Resistance of alpha-synuclein null mice to the parkinsonian neurotoxin MPTP.
        Proc Natl Acad Sci USA. 2002; 99: 14524-14529
        • Olanow C.W.
        Manganese-induced parkinsonism and Parkinson's disease.
        Ann NY Acad Sci. 2004; 1012: 209-223
        • Gitler A.D.
        • Chesi A.
        • Geddie M.L.
        • Strathearn K.E.
        • Hamamichi S.
        • Hill K.J.
        • et al.
        Alpha-synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity.
        Nat Genet. 2009; 41: 308-315
        • Hong D.P.
        • Fink A.L.
        • Uversky V.N.
        Smoking and Parkinson's disease: does nicotine affect alpha-synuclein fibrillation?.
        Biochim Biophys Acta. 2009; 1794: 282-290
        • Li H.T.
        • Lin D.H.
        • Luo X.Y.
        • Zhang F.
        • Ji L.N.
        • Du H.N.
        • et al.
        Inhibition of alpha-synuclein fibrillization by dopamine analogs via reaction with the amino groups of alpha-synuclein, implication for dopaminergic neurodegeneration.
        FEBS J. 2005; 272: 3661-3672
        • Valente E.M.
        • Brancati F.
        • Caputo V.
        • Graham E.A.
        • Davis M.B.
        • Ferraris A.
        • et al.
        PARK6 is a common cause of familial parkinsonism.
        Neurol Sci. 2002; 23: S117-S118
        • Valente E.M.
        • Salvi S.
        • Ialongo T.
        • Marongiu R.
        • Elia A.E.
        • Caputo V.
        • et al.
        PINK1 mutations are associated with sporadic early-onset parkinsonism.
        Ann Neurol. 2004; 56: 336-341
        • Palacino J.J.
        • Sagi D.
        • Goldberg M.S.
        • Krauss S.
        • Motz C.
        • Wacker M.
        • et al.
        Mitochondrial dysfunction and oxidative damage in parkin-deficient mice.
        J Biol Chem. 2004; 279: 18614-18622
        • Canet-Aviles R.M.
        • Wilson M.A.
        • Miller D.W.
        • Ahmad R.
        • McLendon C.
        • Bandyopadhyay S.
        • et al.
        The Parkinson's disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization.
        Proc Natl Acad Sci USA. 2004; 101: 9103-9108
        • Junn E.
        • Jang W.H.
        • Zhao X.
        • Jeong B.S.
        • Mouradian M.M.
        Mitochondrial localization of DJ-1 leads to enhanced neuroprotection.
        J Neurosci Res. 2009; 87: 123-129
        • Gandhi S.
        • Muqit M.M.
        • Stanyer L.
        • Healy D.G.
        • Abou-Sleiman P.M.
        • Hargreaves I.
        • et al.
        PINK1 protein in normal human brain and Parkinson's disease.
        Brain. 2006; 129: 1720-1731
        • Exner N.
        • Treske B.
        • Paquet D.
        • Holmstrom K.
        • Schiesling C.
        • Gispert S.
        • et al.
        Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin.
        J Neurosci. 2007; 27: 12413-12418
        • Atsumi M.
        • Li Y.
        • Tomiyama H.
        • Sato K.
        • Hattori N.
        A 62-year-old woman with early-onset Parkinson's disease associated with the PINKi gene deletion.
        Rinsho Shinkeigaku. 2006; 46: 199-202
        • Henn I.H.
        • Bouman L.
        • Schlehe J.S.
        • Schlierf A.
        • Schramm J.E.
        • Wegener E.
        • et al.
        Parkin mediates neuroprotection through activation of IkappaB kinase/nuclear factor-kappaB signaling.
        J Neurosci. 2007; 27: 1868-1878
        • Zhang Y.
        • Gao J.
        • Chung K.K.
        • Huang H.
        • Dawson V.L.
        • Dawson T.M.
        Parkin functions as an E2-dependent ubiquitin- protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1.
        Proc Natl Acad Sci USA. 2000; 97: 13354-13359
        • Mata I.F.
        • Lockhart P.J.
        • Farrer M.J.
        Parkin genetics: one model for Parkinson's disease.
        Hum Mol Genet. 2004; 13 (Spec No 1:): R127-R133
        • Poole A.C.
        • Thomas R.E.
        • Andrews L.A.
        • McBride H.M.
        • Whitworth A.J.
        • Pallanck L.J.
        The PINK1/Parkin pathway regulates mitochondrial morphology.
        Proc Natl Acad Sci USA. 2008; 105: 1638-1643
        • Winklhofer K.F.
        • Henn I.H.
        • Kay-Jackson P.C.
        • Heller U.
        • Tatzelt J.
        Inactivation of parkin by oxidative stress and C-terminal truncations: a protective role of molecular chaperones.
        J Biol Chem. 2003; 278: 47199-47208
        • Twig G.
        • Elorza A.
        • Molina A.J.
        • Mohamed H.
        • Wikstrom J.D.
        • Walzer G.
        • et al.
        Fission and selective fusion govern mitochondrial segregation and elimination by autophagy.
        EMBO J. 2008; 27: 433-446
        • Narendra D.
        • Tanaka A.
        • Suen D.F.
        • Youle R.J.
        Parkin is recruited selectively to impaired mitochondria and promotes their autophagy.
        J Cell Biol. 2008; 183: 795-803
        • Cookson M.R.
        Pathways to Parkinsonism.
        Neuron. 2003; 37: 7-10
        • Bonifati V.
        • Rizzu P.
        • van Baren M.J.
        • Schaap O.
        • Breedveld G.J.
        • Krieger E.
        • et al.
        Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism.
        Science. 2003; 299: 256-259
        • Bonifati V.
        • Rizzu P.
        • Squitieri F.
        • Krieger E.
        • Vanacore N.
        • van Swieten J.C.
        • et al.
        DJ-1(PARK7), a novel gene for autosomal recessive, early onset parkinsonism.
        Neurol Sci. 2003; 24: 159-160
        • Taira T.
        • Saito Y.
        • Niki T.
        • Iguchi-Ariga S.M.
        • Takahashi K.
        • Ariga H.
        DJ-1 has a role in antioxidative stress to prevent cell death.
        EMBO Rep. 2004; 5: 213-218
        • Hering R.
        • Strauss K.M.
        • Tao X.
        • Bauer A.
        • Woitalla D.
        • Mietz E.M.
        • et al.
        Novel homozygous p.E64D mutation in DJ1 in early onset Parkinson disease (PARK7).
        Hum Mutat. 2004; 24: 321-329
        • Krebiehl G.
        • Ruckerbauer S.
        • Burbulla L.F.
        • Kieper N.
        • Maurer B.
        • Waak J.
        • et al.
        Reduced basal autophagy and impaired mitochondrial dynamics due to loss of Parkinson's disease-associated protein DJ-1.
        PLoS One. 2010; 5: e9367
        • Burbulla L.F.
        • Krebiehl G.
        • Kruger R.
        Balance is the challenge—the impact of mitochondrial dynamics in Parkinson's disease.
        Eur J Clin Invest. 2010; 40: 1048-1060
        • Kamp F.
        • Exner N.
        • Lutz A.K.
        • Wender N.
        • Hegermann J.
        • Brunner B.
        • et al.
        Inhibition of mitochondrial fusion by alpha-synuclein is rescued by PINK1, Parkin and DJ-1.
        EMBO J. 2010; 29: 3571-3589
        • Marongiu R.
        • Ferraris A.
        • Ialongo T.
        • Michiorri S.
        • Soleti F.
        • Ferrari F.
        • et al.
        PINK1 heterozygous rare variants: prevalence, significance and phenotypic spectrum.
        Hum Mutat. 2008; 29: 565
        • Klein C.
        • Lohmann-Hedrich K.
        • Rogaeva E.
        • Schlossmacher M.G.
        • Lang A.E.
        Deciphering the role of heterozygous mutations in genes associated with parkinsonism.
        Lancet Neurol. 2007; 6: 652-662
        • Hedrich K.
        • Kann M.
        • Lanthaler A.J.
        • Dalski A.
        • Eskelson C.
        • Landt O.
        • et al.
        The importance of gene dosage studies: mutational analysis of the parkin gene in early-onset parkinsonism.
        Hum Mol Genet. 2001; 10: 1649-1656
        • Khan N.L.
        • Valente E.M.
        • Bentivoglio A.R.
        • Wood N.W.
        • Albanese A.
        • Brooks D.J.
        • et al.
        Clinical and subclinical dopaminergic dysfunction in PARK6-linked parkinsonism: an 18F-dopa PET study.
        Ann Neurol. 2002; 52: 849-853
        • Betarbet R.
        • Sherer T.B.
        • MacKenzie G.
        • Garcia-Osuna M.
        • Panov A.V.
        • Greenamyre J.T.
        Chronic systemic pesticide exposure reproduces features of Parkinson's disease.
        Nat Neurosci. 2000; 3: 1301-1306
        • Sherer T.B.
        • Kim J.H.
        • Betarbet R.
        • Greenamyre J.T.
        Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation.
        Exp Neurol. 2003; 179: 9-16
        • Sherer T.B.
        • Betarbet R.
        • Testa C.M.
        • Seo B.B.
        • Richardson J.R.
        • Kim J.H.
        • et al.
        Mechanism of toxicity in rotenone models of Parkinson's disease.
        J Neurosci. 2003; 23: 10756-10764
        • Ascherio A.
        • Chen H.
        • Weisskopf M.G.
        • O'Reilly E.
        • McCullough M.L.
        • Calle E.E.
        • et al.
        Pesticide exposure and risk for Parkinson's disease.
        Ann Neurol. 2006; 60: 197-203
        • Hatcher J.M.
        • Pennell K.D.
        • Miller G.W.
        Parkinson's disease and pesticides: a toxicological perspective.
        Trends Pharmacol Sci. 2008; 29: 322-329
        • Elbaz A.
        • Levecque C.
        • Clavel J.
        • Vidal J.S.
        • Richard F.
        • Amouyel P.
        • et al.
        CYP2D6 polymorphism, pesticide exposure, and Parkinson's disease.
        Ann Neurol. 2004; 55: 430-434
        • Zhao B.
        Natural antioxidants protect neurons in Alzheimer's disease and Parkinson's disease.
        Neurochem Res. 2009; 34: 630-638
        • Hu G.
        • Bidel S.
        • Jousilahti P.
        • Antikainen R.
        • Tuomilehto J.
        Coffee and tea consumption and the risk of Parkinson's disease.
        Mov Disord. 2007; 22: 2242-2248
        • Nakaso K.
        • Ito S.
        • Nakashima K.
        Caffeine activates the PI3K/Akt pathway and prevents apoptotic cell death in a Parkinson's disease model of SH-SY5Y cells.
        Neurosci Lett. 2008; 432: 146-150
        • Tan L.C.
        • Koh W.P.
        • Yuan J.M.
        • Wang R.
        • Au W.L.
        • Tan J.H.
        • et al.
        Differential effects of black versus green tea on risk of Parkinson's disease in the Singapore Chinese Health Study.
        Am J Epidemiol. 2008; 167: 553-560
        • Chan P.
        • Qin Z.
        • Zheng Z.
        • Zhang L.
        • Fang X.
        • Sun F.
        • et al.
        A randomized, double-blind, placebo controlled, delayed start study to assess safety, tolerability and efficacy of green tea polyphenols in Parkinson's disease.
        in: XVIII WFN World Congress on Parkinson's Disease and Related Disorders. 2009 (abstract.)
        • Weinreb O.
        • Amit T.
        • Mandel S.
        • Youdim M.B.
        Neuroprotective molecular mechanisms of (−)-epigallocatechin-3-gallate: a reflective outcome of its antioxidant, iron chelating and neuritogenic properties.
        Genes Nutr. 2009; 4: 283-296
        • Satake W.
        • Nakabayashi Y.
        • Mizuta I.
        • Hirota Y.
        • Ito C.
        • Kubo M.
        • et al.
        Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease.
        Nat Genet. 2009; 41: 1303-1307
        • Tain L.S.
        • Mortiboys H.
        • Tao R.N.
        • Ziviani E.
        • Bandmann O.
        • Whitworth A.J.
        Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss.
        Nat Neurosci. 2009; 12: 1129-1135
        • Chartier-Harlin M.C.
        • Dachsel J.
        • Hulihan M.
        • Kachergus J.
        • Lepretre Le
        • Rhun E.
        • et al.
        EIF4G1 mutations in familial parkinsonism.
        in: XVIII WFN World Congress on Parkinson's Disease and Related Disorders. 2009 (abstract No. 1154.)