Advertisement
Research Article| Volume 306, ISSUE 1-2, P121-128, July 15, 2011

Cross-talk between CD4+ T-cells and neural stem/progenitor cells

Published:April 15, 2011DOI:https://doi.org/10.1016/j.jns.2011.03.030

      Abstract

      Immune–neural interactions dictate both lesion formation and repair in multiple sclerosis (MS). MS pathogenesis is mediated by the interplay of invading immune cells, neurons, glia, and endogenous stores of neural stem/progenitor cells (NPCs). However, the signals important in this cross-talk are not well defined. We utilized a co-culture method and flow cytometric analysis capable of detecting outcomes for both cell types. Here we describe the effects of NPCs on three different CD4+ subtypes (Th1, Th2, and Th17) and vice versa. Utilizing lpr (Fas receptor-deficient) and gld (Fas ligand-deficient) NPC lines, we further define the role of Fas in this neuroimmune cross-talk. We show that only the Th1 subtype is capable of inducing NPC cell death, and this is independent of Fas activation. Conversely, NPCs specifically kill pro-inflammatory Th1 and Th17 cells in a contact-dependent manner without affecting Th2 survival. Further investigation into these effects revealed that FasL expressed by NPCs mediates Th17 apoptosis. Additionally NPC/T-cell cross-talk modulates FasL expression in both cell types, while Fas receptor levels remains static. These findings illuminate the direct neuropathogenic effects of T-cells, as well as help define the immunomodulatory capacity of NPCs. We have elucidated novel interactions that may be critical in MS pathogenesis.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Pluchino S.
        • Furlan R.
        • Martino G.
        Cell-based remyelinating therapies in multiple sclerosis: evidence from experimental studies.
        Curr Opin Neurol. 2004; 17: 247-255
        • Picard-Riera N.
        • Decker L.
        • Delarasse C.
        • Goude K.
        • Nait-Oumesmar B.
        • Liblau R.
        • et al.
        Experimental autoimmune encephalomyelitis mobilizes neural progenitors from the subventricular zone to undergo oligodendrogenesis in adult mice.
        Proc Natl Acad Sci USA. 2002; 99: 13211-13216
        • Menn B.
        • Garcia-Verdugo J.M.
        • Yaschine C.
        • Gonzalez-Perez O.
        • Rowitch D.
        • Alvarez-Buylla A.
        Origin of oligodendrocytes in the subventricular zone of the adult brain.
        J Neurosci. 2006; 26: 7907-7918
        • Blakemore W.F.
        Regeneration and repair in multiple sclerosis: the view of experimental pathology.
        J Neurol Sci. 2008; 265: 1-4
        • Pluchino S.
        • Muzio L.
        • Imitola J.
        • Deleidi M.
        • Alfaro-Cervello C.
        • Salani G.
        • et al.
        Persistent inflammation alters the function of the endogenous brain stem cell compartment.
        Brain. 2008; 131: 2564-2578
        • Pluchino S.
        • Quattrini A.
        • Brambilla E.
        • Gritti A.
        • Salani G.
        • Dina G.
        • et al.
        Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis.
        Nature. 2003; 422: 688-694
        • Einstein O.
        • Karussis D.
        • Grigoriadis N.
        • Mizrachi-Kol R.
        • Reinhartz E.
        • Abramsky O.
        • et al.
        Intraventricular transplantation of neural precursor cell spheres attenuates acute experimental allergic encephalomyelitis.
        Mol Cell Neurosci. 2003; 24: 1074-1082
        • Pluchino S.
        • Gritti A.
        • Blezer E.
        • Amadio S.
        • Brambilla E.
        • Borsellino G.
        • et al.
        Human neural stem cells ameliorate autoimmune encephalomyelitis in non-human primates.
        Ann Neurol. 2009; 66: 343-354
        • Pluchino S.
        • Zanotti L.
        • Rossi B.
        • Brambilla E.
        • Ottoboni L.
        • Salani G.
        • et al.
        Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism.
        Nature. 2005; 436: 266-271
        • Einstein O.
        • Grigoriadis N.
        • Mizrachi-Kol R.
        • Reinhartz E.
        • Polyzoidou E.
        • Lavon I.
        • et al.
        Transplanted neural precursor cells reduce brain inflammation to attenuate chronic experimental autoimmune encephalomyelitis.
        Exp Neurol. 2006; 198: 275-284
        • Aharonowiz M.
        • Einstein O.
        • Fainstein N.
        • Lassmann H.
        • Reubinoff B.
        • Ben-Hur T.
        Neuroprotective effect of transplanted human embryonic stem cell-derived neural precursors in an animal model of multiple sclerosis.
        PLoS ONE. 2008; 3: e3145
        • Fainstein N.
        • Vaknin I.
        • Einstein O.
        • Zisman P.
        • Ben Sasson S.Z.
        • Baniyash M.
        • Ben-Hur T.
        Neural precursor cells inhibit multiple inflammatory signals.
        Mol Cell Neurosci. 2008; 39: 335-341
        • Pluchino S.
        • Zanotti L.
        • Brambilla E.
        • Rovere-Querini P.
        • Capobianco A.
        • Alfaro-Cervello C.
        • et al.
        Immune regulatory neural stem/precursor cells protect from central nervous system autoimmunity by restraining dendritic cell function.
        PLoS ONE. 2009; 4: e5959
        • Wang L.
        • Shi J.
        • van Ginkel F.W.
        • Lan L.
        • Niemeyer G.
        • Martin D.R.
        • et al.
        Neural stem/progenitor cells modulate immune responses by suppressing T lymphocytes with nitric oxide and prostaglandin E2.
        Exp Neurol. 2009; 216: 177-183
        • Nagata S.
        • Golstein P.
        The Fas death factor.
        Science. 1995; 267: 1449-1456
        • Knight J.
        • Scharf E.
        • Mao-Draayer Y.
        Fas activation increases neural progenitor cell survival.
        J Neurosci Res. 2009; 88: 746-757
        • Corsini N.S.
        • Sancho-Martinez I.
        • Laudenklos S.
        • Glagow D.
        • Kumar S.
        • Letellier E.
        • et al.
        The death receptor CD95 activates adult neural stem cells for working memory formation and brain repair.
        Cell Stem Cell. 2009; 5: 178-190
        • Spees J.L.
        • Olson S.D.
        • Whitney M.J.
        • Prockop D.J.
        Mitochondrial transfer between cells can rescue aerobic respiration.
        Proc Natl Acad Sci USA. 2006; 103: 1283-1288
        • Noubade R.
        • Milligan G.
        • Zachary J.F.
        • Blankenhorn E.P.
        • del Rio R.
        • Rincon M.
        • et al.
        Histamine receptor H1 is required for TCR-mediated p38 MAPK activation and optimal IFN-gamma production in mice.
        J Clin Invest. 2007; 117: 3507-3518
        • Giuliani F.
        • Goodyer C.G.
        • Antel J.P.
        • Yong V.W.
        Vulnerability of human neurons to T cell-mediated cytotoxicity.
        J Immunol. 2003; 171: 368-379
        • Li W.
        • Maeda Y.
        • Ming X.
        • Cook S.
        • Chapin J.
        • Husar W.
        • et al.
        Apoptotic death following Fas activation in human oligodendrocyte hybrid cultures.
        J Neurosci Res. 2002; 69: 189-196
        • Pluchino S.
        • Martino G.
        The therapeutic use of stem cells for myelin repair in autoimmune demyelinating disorders.
        J Neurol Sci. 2005; 233: 117-119
        • Ben-Hur T.
        • Einstein O.
        • Mizrachi-Kol R.
        • Ben-Menachem O.
        • Reinhartz E.
        • Karussis D.
        • et al.
        Transplanted multipotential neural precursor cells migrate into the inflamed white matter in response to experimental autoimmune encephalomyelitis.
        Glia. 2003; 41: 73-80
        • Langrish C.L.
        • Chen Y.
        • Blumenschein W.M.
        • Mattson J.
        • Basham B.
        • Sedgwick J.D.
        • et al.
        IL-23 drives a pathogenic T cell population that induces autoimmune inflammation.
        J Exp Med. 2005; 201: 233-240
        • Murphy C.A.
        • Langrish C.L.
        • Chen Y.
        • Blumenschein W.
        • McClanahan T.
        • Kastelein R.A.
        • et al.
        Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation.
        J Exp Med. 2003; 198: 1951-1957
        • Cua D.J.
        • Sherlock J.
        • Chen Y.
        • Murphy C.A.
        • Joyce B.
        • Seymour B.
        • et al.
        Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain.
        Nature. 2003; 421: 744-748
        • 't Hart B.A.
        • Brok H.P.M.
        • Remarque E.
        • Benson J.
        • Treacy G.
        • Amor S.
        • et al.
        Suppression of ongoing disease in a nonhuman primate model of multiple sclerosis by a human-anti-human IL-12p40 antibody.
        J Immunol. 2005; 175: 4761-4768
        • Tzartos J.S.
        • Friese M.A.
        • Craner M.J.
        • Palace J.
        • Newcombe J.
        • Esiri M.M.
        • et al.
        Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis.
        Am J Pathol. 2008; 172: 146-155
        • Kebir H.
        • Kreymborg K.
        • Ifergan I.
        • Dodelet-Devillers A.
        • Cayrol R.
        • Bernard M.
        • et al.
        Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation.
        Nat Med. 2007; 13: 1173-1175
        • Lock C.
        • Hermans G.
        • Pedotti R.
        • Brendolan A.
        • Schadt E.
        • Garren H.
        • et al.
        Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis.
        Nat Med. 2002; 8: 500-508
        • Brundin L.
        • Brismar H.
        • Danilov A.I.
        • Olsson T.
        • Johansson C.B.
        Neural stem cells: a potential source for remyelination in neuroinflammatory disease.
        Brain Pathol. 2003; 13: 322-328
        • Chang A.
        • Nishiyama A.
        • Peterson J.
        • Prineas J.
        • Trapp B.D.
        NG2-positive oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions.
        J Neurosci. 2000; 20: 6404-6412
        • Stadelmann C.
        • Brück W.
        Interplay between mechanisms of damage and repair in multiple sclerosis.
        J Neurol. 2008; 255: 12-18
        • Frischer J.M.
        • Bramow S.
        • Dal-Bianco A.
        • Lucchinetti C.F.
        • Rauschka H.
        • Schmidbauer M.
        • et al.
        The relation between inflammation and neurodegeneration in multiple sclerosis brains.
        Brain. 2009; 132: 1175-1189