Advertisement
Research Article| Volume 306, ISSUE 1-2, P129-137, July 15, 2011

Neurobiological responses to stereotactic focal irradiation of the adult rodent hippocampus

  • Matthew K. Schindler
    Affiliations
    Program in Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, USA
    Search for articles by this author
  • J. Daniel Bourland
    Affiliations
    Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, USA

    Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, NC, USA
    Search for articles by this author
  • M. Elizabeth Forbes
    Affiliations
    Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC, USA
    Search for articles by this author
  • Kun Hua
    Affiliations
    Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC, USA
    Search for articles by this author
  • David R. Riddle
    Correspondence
    Corresponding author at: Department of Neurobiology, Wake Forest University School of Medicine, Medical Center Blvd., Winston Salem, NC 27157, USA. Tel.: +1 336 716 4677; fax: +1 336 716 4534.
    Affiliations
    Program in Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, USA

    Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC, USA

    Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, NC, USA
    Search for articles by this author
Published:April 11, 2011DOI:https://doi.org/10.1016/j.jns.2011.03.025

      Abstract

      Radiation effectively treats brain tumors and other pathologies but dose and treatment plans are limited by normal tissue injury, a major cause of morbidity in survivors. Clinically significant normal tissue injury can occur even with therapies that target pathological tissue and limit out-of-target irradiation. Elucidating the mechanisms underlying normal tissue injury is facilitated by studying the effects of focal irradiation and comparing irradiated and un-irradiated tissue in experimental animals. Young adult rats were irradiated using the Leksell Gamma Knife® with a 10 Gy maximum dose directed at the left hippocampus and shaped to minimize irradiation contralaterally. At least 95% of targeted hippocampus received ≥3 Gy, while all points in the contralateral hippocampus received <0.3 Gy. Neuronal and microglial markers of damage were assessed in the targeted and contralateral hemispheres of Gamma Knife®-treated rats and compared to non-irradiated controls. Acute cell death and sustained changes in neurogenesis and in microglia occurred in the dentate gyrus of the targeted, but not the contralateral, hippocampus, providing experimental evidence that focal irradiation at doses received by peri-target regions during targeted radiation therapy produces robust normal tissue responses. Additional studies using this approach will facilitate assessment of in vivo dose responses and the cellular and molecular mechanisms of radiation-induced brain injury.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Barani I.J.
        • Cuttino L.W.
        • Benedict S.H.
        • Todor D.
        • Bump E.A.
        • Wu Y.
        • et al.
        Neural stem cell-preserving external-beam radiotherapy of central nervous system malignancies.
        Int J Radiat Oncol Biol Phys. 2007; 68: 978-985
        • Barani I.J.
        • Benedict S.H.
        • Lin P.S.
        Neural stem cells: implications for the conventional radiotherapy of central nervous system malignancies.
        Int J Radiat Oncol Biol Phys. 2007; 68: 324-333
        • Gutiérrez A.N.
        • Westerly D.C.
        • Tomé W.A.
        • Jaradat H.A.
        • Mackie T.R.
        • Bentzem S.N.
        • et al.
        Whole brain radiotherapy with hippocampal avoidance and simultaneously integrated brain metastases boost: a planning study.
        Int J Radiat Oncol Biol Phys. 2007; 69: 589-597
        • Marsh J.C.
        • Godbole R.H.
        • Herskovic A.M.
        • Gielda B.T.
        • Turian J.V.
        Sparing of the neural stem cell compartment during whole-brain radiation therapy: a dosimetric study using helical tomotherapy.
        Int J Radiat Oncol Biol Phys. 2010; 78: 946-954
        • Kondziolka D.
        Functional radiosurgery. Neurosurgery. 1999; 44: 12-20
        • Gerosa M.
        • Nicolato A.
        • Foroni R.
        The role of gamma knife radiosurgery in the treatment of primary and metastatic brain tumors.
        Curr Opin Oncol. 2003; 15: 188-196
        • Werner-Wasik M.
        • Rudoler S.
        • Preston P.E.
        • Hauck W.W.
        • Downes B.M.
        • Leeper D.
        Immediate side effects of stereotactic radiotherapy and radiosurgery.
        Int J Radiat Oncol Biol Phys. 1999; 43: 299-304
        • Swennen M.H.
        • Bromberg J.E.
        • Witkamp T.D.
        • Terhaard C.H.
        • Postma T.J.
        • Taphoorn M.J.
        Delayed radiation toxicity after focal or whole brain radiotherapy for low-grade glioma.
        J Neurooncol. 2004; 66: 333-339
        • Kollova A.
        • Liscak R.
        • Novotny J.
        • Vladyka V.
        • Simonova G.
        • Janousková L.
        Gamma Knife surgery for benign meningioma.
        J Neurosurg. 2007; 107: 325-336
        • Mizumatsu S.
        • Monje M.L.
        • Morhardt D.R.
        • Rola R.
        • Palmer T.D.
        • Fike J.R.
        Extreme sensitivity of adult neurogenesis to low doses of X-irradiation.
        Cancer Res. 2003; 63: 4021-4027
        • Andres-Mach M.
        • Rola R.
        • Fike J.R.
        Radiation effects on neural precursor cells in the dentate gyrus.
        Cell Tissue Res. 2008; 331: 251-262
        • Raber J.
        • Rola R.
        • LeFevour A.
        • Morhardt D.
        • Curley J.
        • Mizumatsu S.
        Radiation-induced cognitive impairments are associated with changes in indicators of hippocampal neurogenesis.
        Radiat Res. 2004; 162: 39-47
        • Rola R.
        • Raber J.
        • Rizk A.
        • Otsuka S.
        • VandenBerg R.
        • Morhardt D.R.
        Radiation-induced impairment of hippocampal neurogenesis is associated with cognitive deficits in young mice.
        Exp Neurol. 2004; 188: 316-330
        • Kim J.S.
        • Lee H.J.
        • Kim J.C.
        • Kang S.S.
        • Bae C.S.
        • Shin T.
        Transient impairment of hippocampus-dependent learning and memory in relatively low-dose of acute radiation syndrome is associated with inhibition of hippocampal neurogenesis.
        J Radiat Res (Tokyo). 2008; 49: 517-526
        • Monje M.L.
        • Mizumatsu S.
        • Fike J.R.
        • Palmer T.D.
        Irradiation induces neural precursor-cell dysfunction.
        Nat Med. 2002; 8: 955-962
        • Monje M.L.
        • Toda H.
        • Palmer T.D.
        Inflammatory blockade restores adult hippocampal neurogenesis.
        Science. 2003; 302: 1760-1765
        • Lamproglou I.
        • Chen Q.M.
        • Boisserie G.
        • Mazeron J.J.
        • Poisson M.
        • Baillet F.
        Radiation-induced cognitive dysfunction: an experimental model in the old rat.
        Int J Radiat Oncol Biol Phys. 1995; 31: 65-70
        • Lamproglou I.
        • Baillet F.
        • Boisserie G.
        • Mazeron J.J.
        • Delattre J.Y.
        The influence of age on radiation-induced cognitive deficit: experimental studies on brain irradiation of 30 Gy in 10 sessions and 12 hours in the Wistar rat at 1 1/2, 4 and 18 months age.
        Can J Physiol Pharmacol. 2002; 80: 679-685
        • Madsen T.M.
        • Kristjansen P.E.
        • Bolwig T.G.
        • Wörtwein G.
        Arrested neuronal proliferation and impaired hippocampal function following fractionated brain irradiation in the adult rat.
        Neuroscience. 2003; 119: 635-642
        • Brown W.R.
        • Blair R.M.
        • Moody D.M.
        • Thore C.R.
        • Ahmed S.
        • Robbins M.E.
        Capillary loss precedes the cognitive impairment induced by fractionated whole-brain irradiation: a potential rat model of vascular dementia.
        J Neurol Sci. 2007; 257: 67-71
        • Zhao W.
        • Payne V.
        • Tommasi E.
        • Diz D.I.
        • Hsu F.C.
        • Robbins M.E.
        Administration of the peroxisomal proliferator-activated receptor gamma agonist pioglitazone during fractionated brain irradiation prevents radiation-induced cognitive impairment.
        Int J Radiat Oncol Biol Phys. 2007; 67: 6-9
        • Shi L.
        • Molina D.
        • Robbins M.
        • Wheeler K.T.
        • Brunso-Bechtold J.K.
        Hippocampal neuron number is unchanged one year after fractionated whole-brain irradiation at middle age.
        Int J Radiat Oncol Biol Phys. 2008; 72: 526-532
        • Shi L.
        • Linville M.C.
        • Iversen E.
        • Molina D.P.
        • Yester J.
        • Wheeler K.T.
        Maintenance of white matter integrity in a rat model of radiation-induced cognitive impairment.
        J Neurol Sci. 2009; 285: 178-184
        • Bartolomei F.
        • Massacrier A.
        • Rey M.
        • Viale M.
        • Régis J.
        • Gastaldi M.
        Effect of gamma knife radiosurgery on rat brain sodium channel subunit mRNA expression.
        Stereotact Funct Neurosurg. 1998; 1: 237-242
        • Yang T.
        • Wu S.L.
        • Liang J.C.
        • Rao Z.R.
        • Ju G.
        Time-dependent astroglial changes after gamma knife radiosurgery in the rat forebrain.
        Neurosurgery. 2000; 47: 407-415
        • Hirano M.
        • Rakwal R.
        • Kouyama N.
        • Katayama Y.
        • Hayashi M.
        • Shiboto J.
        Gel-based proteomics of unilateral irradiated striatum after gamma knife surgery.
        J Proteome Res. 2007; 6: 2656-2668
        • Hirano M.
        • Shibato J.
        • Rakwal R.
        • Kouyama N.
        • Katayama Y.
        • Hayashi M.
        Transcriptomic analysis of rat brain tissue following gamma knife surgery: early and distinct bilateral effects in the un-irradiated striatum.
        Mol Cells. 2009; 27: 263-268
        • Duan X.Q.
        • Wu H.X.
        • Liu H.L.
        • Rao Z.R.
        • Ju G.
        Expression and changes of Fos protein in the rat forebrain after gamma knife irradiation targeted to the caudate putamen.
        Neurosurgery. 1999; 45: 139-146
        • Rao Z.R.
        • Ge X.
        • Qiou J.Y.
        • Yang T.
        • Duan L.
        • Ju G.
        Expression and changes of HSP70 in the rat forebrain subjected to gamma knife (100 Gy) irradiation targeted on the caudate putamen and survived for different times.
        Neurosci Res. 2000; 38: 139-146
        • Nowak E.
        • Etienne O.
        • Millet P.
        • Lages C.S.
        • Mathieu C.
        • Mouthan M.A.
        Radiation-induced H2AX phosphorylation and neural precursor apoptosis in the developing brain of mice.
        Radiat Res. 2006; 165: 155-164
        • Paxinos G.
        • Watson C.
        The rat brain: in stereotactic coordinates.
        4th ed. Academic Press, San Deigo (CA)1998
        • Lichtenwalner R.J.
        • Forbes M.E.
        • Bennett S.A.
        • Lynch C.D.
        • Sonntag W.E.
        • Riddle D.R.
        Intracerebroventricular infusion of insulin-like growth factor-I ameliorates the age-related decline in hippocampal neurogenesis.
        Neuroscience. 2001; 107: 603-613
        • Schindler M.K.
        • Forbes M.E.
        • Robbins M.E.
        • Riddle D.R.
        Aging-dependent changes in the radiation response of the adult rat brain.
        Int J Radiat Oncol Biol Phys. 2008; 70: 826-834
        • Damoiseaux J.G.
        • Dopp E.A.
        • Calame W.
        • Chao D.
        • MacPherson G.G.
        • Dijkstra C.D.
        Rat macrophage lysosomal membrane antigen recognized by monoclonal antibody ED1.
        Immunology. 1994; 83: 140-147
        • Neumann H.
        • Misgeld T.
        • Matsumuro K.
        • Wekerle H.
        Neurotrophins inhibit major histocompatibility class II inducibility of microglia: involvement of the p75 neurotrophin receptor.
        Proc Natl Acad Sci USA. 1998; 95: 5779-5784
        • Ito D.
        • Imai Y.
        • Ohsawa K.
        • Nakajima K.
        • Fukuuchi Y.
        • Kohsaka S.
        Microglia-specific localisation of a novel calcium binding protein, Iba1.
        Brain Res Mol Brain Res. 1998; 57: 1-9
        • Gundersen H.J.
        • Bagger P.
        • Bendtsen T.F.
        • Evans S.M.
        • Korbo L.
        • Marcussen N.
        The new stereological tools: disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis.
        APMIS. 1988; 96: 857-881
        • Tada E.
        • Parent J.M.
        • Lowenstein D.H.
        • Fike J.R.
        X-irradiation causes a prolonged reduction in cell proliferation in the dentate gyrus of adult rats.
        Neuroscience. 2000; 99: 33-41
        • Ghia A.
        • Tomé W.A.
        • Thomas S.
        • Cannon G.
        • Khuntia D.
        • Kuo J.S.
        • et al.
        Distribution of brain metastases in relation to the hippocampus: implications for neurocognitive functional preservation.
        Int J Radiat Oncol Biol Phys. 2007; 68: 971-977
        • Hanisch U.K.
        • Kettenmann H.
        Microglia: active sensor and versatile effector cells in the normal and pathologic brain.
        Nat Neurosci. 2007; 10: 1387-1394
        • Ransohoff R.M.
        • Perry V.H.
        Microglial physiology: unique stimuli, specialized responses.
        Annu Rev Immunol. 2009; 27: 119-145
        • Ajami B.
        • Bennett J.L.
        • Krieger C.
        • Tetzlaff W.
        • Rossi F.M.
        Local self-renewal can sustain CNS microglia maintenance and function throughout adult life.
        Nat Neurosci. 2007; 10: 1538-1543
        • Tofilon P.J.
        • Fike J.R.
        The radioresponse of the central nervous system: a dynamic process.
        Radiat Res. 2000; 153: 357-370
        • Robbins M.E.
        • Zhao W.
        Chronic oxidative stress and radiation-induced late normal tissue injury: a review.
        Int J Radiat Biol. 2004; 80: 251-259
        • Yoneoka Y.
        • Satoh M.
        • Akiyama K.
        • Sano K.
        • Fujii Y.
        • Tanaka R.
        An experimental study of radiation-induced cognitive dysfunction in an adult rat model.
        Br J Radiol. 1999; 72: 1196-1201
        • Robbins M.E.
        • Payne V.
        • Tommasi E.
        • Diz D.I.
        • Hsu F.C.
        • Brown W.R.
        The AT1 receptor antagonist, L-158,809, prevents or ameliorates fractionated whole-brain irradiation-induced cognitive impairment.
        Int J Radiat Oncol Biol Phys. 2009; 73: 499-505
        • Dropcho E.J.
        Central nervous system injury by therapeutic irradiation.
        Neurol Clin. 1991; 9: 969-988
        • Crossen J.R.
        • Garwood D.
        • Glatstein E.
        • Neuwelt E.A.
        Neurobehavioral sequelae of cranial irradiation in adults: a review of radiation-induced encephalopathy.
        J Clin Oncol. 1994; 12: 627-642
        • Fike J.R.
        • Rosi S.
        • Limoli C.L.
        Neural precursor cells and central nervous system radiation sensitivity.
        Semin Radiat Oncol. 2009; 19: 122-132