Research Article| Volume 298, ISSUE 1-2, P28-34, November 15, 2010

Download started.


Enhancing trophic support of mesenchymal stem cells by ex vivo treatment with trophic factors



      Several studies have examined the enhanced efficacy of mesenchymal stem cells (MSCs) using neurotrophic factor transfection in ischemic rat models. However, gene therapy, e.g., the application of MSCs transfected with neurotrophic factors, is not feasible in clinical practice for ethical reasons. Therefore, we evaluated cultivation with specific trophic factors in an attempt to enhance the efficacy of human MSCs (hMSCs) in ischemic stroke.


      Using quantitative sandwich enzyme-linked immunosorbent assay (ELISA), we analyzed the levels of trophic factors released from hMSCs after treatment with ischemic brain extract. Trophic factors were pretreated under ex vivo culture conditions. The concentrations of each trophic factor produced by the trophic factor-pretreated and non-pretreated hMSCs were then measured and compared.


      hMSCs cultured with ischemic rat brain extract showed increased production of BDNF (brain-derived neurotrophic factor), VEGF (vascular endothelial growth factor) and HGF (hepatocyte growth factor). Ex vivo treatment with trophic factors led to a further increase in the production of the trophic factor by hMSC, suggesting autocrine regulation of hMSCs. The morphology and expression of surface markers of hMSCs were not changed, but the cell viability and cell proliferation ability increased after treatment with trophic factors.


      Our data indicate that hMSCs provide trophic support to the ischemic brain, which can be enhanced by ex vivo treatment of trophic factors during cultivation of hMSCs.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Chen J.
        • Li Y.
        • Wang L.
        • Zhang Z.
        • Lu D.
        • Lu M.
        • et al.
        Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats.
        Stroke. 2001; 32: 1005-1011
        • Li Y.
        • Chen J.
        • Chen X.G.
        • Wang L.
        • Gautam S.C.
        • Xu Y.X.
        • et al.
        Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery.
        Neurology. 2002; 59: 514-523
        • Zhao L.R.
        • Duan W.M.
        • Reyes M.
        • Keene C.D.
        • Verfaillie C.M.
        • Low W.C.
        Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats.
        Exp Neurol. 2002; 174: 11-20
        • Bang O.Y.
        • Lee J.S.
        • Lee P.H.
        • Lee G.
        Autologous mesenchymal stem cell transplantation in stroke patients.
        Ann Neurol. 2005; 57: 874-882
        • Majumdar M.K.
        • Thiede M.A.
        • Haynesworth S.E.
        • Bruder S.P.
        • Gerson S.L.
        Human marrow-derived mesenchymal stem cells (MSCs) express hematopoietic cytokines and support long-term hematopoiesis when differentiated toward stromal and osteogenic lineages.
        J Hematother Stem Cell Res. 2000; 9: 841-848
        • Dormady S.P.
        • Bashayan O.
        • Dougherty R.
        • Zhang X.M.
        • Basch R.S.
        Immortalized multipotential mesenchymal cells and the hematopoietic microenvironment.
        J Hematother Stem Cell Res. 2001; 10: 125-140
        • Wieczorek G.
        • Steinhoff C.
        • Schulz R.
        • Scheller M.
        • Vingron M.
        • Ropers H.H.
        • et al.
        Gene expression profile of mouse bone marrow stromal cells determined by CDNA microarray analysis.
        Cell Tissue Res. 2003; 311: 227-237
        • Chen X.
        • Li Y.
        • Wang L.
        • Katakowski M.
        • Zhang L.
        • Chen J.
        • et al.
        Ischemic rat brain extracts induce human marrow stromal cell growth factor production.
        Neuropathology. 2002; 22: 275-279
        • Gnecchi M.
        • He H.
        • Noiseux N.
        • Liang O.D.
        • Zhang L.
        • Morello F.
        • et al.
        Evidence supporting paracrine hypothesis for AKT-modified mesenchymal stem cell-mediated cardiac protection and functional improvement.
        FASEB J. 2006; 20: 661-669
        • Chen X.
        • Katakowski M.
        • Li Y.
        • Lu D.
        • Wang L.
        • Zhang L.
        • et al.
        Human bone marrow stromal cell cultures conditioned by traumatic brain tissue extracts: growth factor production.
        J Neurosci Res. 2002; 69: 687-691
        • Lu D.
        • Mahmood A.
        • Wang L.
        • Li Y.
        • Lu M.
        • Chopp M.
        Adult bone marrow stromal cells administered intravenously to rats after traumatic brain injury migrate into brain and improve neurological outcome.
        NeuroReport. 2001; 12: 559-563
        • Li W.Y.
        • Choi Y.J.
        • Lee P.H.
        • Huh K.
        • Kang Y.M.
        • Kim H.S.
        • et al.
        Mesenchymal stem cells for ischemic stroke: changes in effects after ex vivo culturing.
        Cell Transplant. 2008; 17: 1045-1059
        • Savitz S.I.
        • Rosenbaum D.M.
        • Dinsmore J.H.
        • Wechsler L.R.
        • Caplan L.R.
        Cell transplantation for stroke.
        Ann Neurol. 2002; 52: 266-275
        • Schabitz W.R.
        • Steigleder T.
        • Cooper-Kuhn C.M.
        • Schwab S.
        • Sommer C.
        • Schneider A.
        • et al.
        Intravenous brain-derived neurotrophic factor enhances poststroke sensorimotor recovery and stimulates neurogenesis.
        Stroke. 2007; 38: 2165-2172
        • Wang Y.Q.
        • Guo X.
        • Qiu M.H.
        • Feng X.Y.
        • Sun F.Y.
        VEGF overexpression enhances striatal neurogenesis in brain of adult rat after a transient middle cerebral artery occlusion.
        J Neurosci Res. 2007; 85: 73-82
        • Kurozumi K.
        • Nakamura K.
        • Tamiya T.
        • Kawano Y.
        • Ishii K.
        • Kobune M.
        • et al.
        Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model.
        Mol Ther. 2005; 11: 96-104
        • Lichtenwalner R.J.
        • Parent J.M.
        Adult neurogenesis and the ischemic forebrain.
        J Cereb Blood Flow Metab. 2006; 26: 1-20
        • Horita Y.
        • Honmou O.
        • Harada K.
        • Houkin K.
        • Hamada H.
        • Kocsis J.D.
        Intravenous administration of glial cell line-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in the adult rat.
        J Neurosci Res. 2006; 84: 1495-1504
        • Zhao M.Z.
        • Nonoguchi N.
        • Ikeda N.
        • Watanabe T.
        • Furutama D.
        • Miyazawa D.
        • et al.
        Novel therapeutic strategy for stroke in rats by bone marrow stromal cells and ex vivo HGF gene transfer with HSV-1 vector.
        J Cereb Blood Flow Metab. 2006; 26: 1176-1188
        • Nomura T.
        • Honmou O.
        • Harada K.
        • Houkin K.
        • Hamada H.
        • Kocsis J.D.
        I.V. Infusion of brain-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat.
        Neuroscience. 2005; 136: 161-169
        • Matsumoto R.
        • Omura T.
        • Yoshiyama M.
        • Hayashi T.
        • Inamoto S.
        • Koh K.R.
        • et al.
        Vascular endothelial growth factor-expressing mesenchymal stem cell transplantation for the treatment of acute myocardial infarction.
        Arterioscler Thromb Vasc Biol. 2005; 25: 1168-1173
        • Liu H.
        • Honmou O.
        • Harada K.
        • Nakamura K.
        • Houkin K.
        • Hamada H.
        • et al.
        Neuroprotection by PLGF gene-modified human mesenchymal stem cells after cerebral ischaemia.
        Brain. 2006; 129: 2734-2745
        • Chen H.
        • Chopp M.
        • Zhang Z.G.
        • Garcia J.H.
        The effect of hypothermia on transient middle cerebral artery occlusion in the rat.
        J Cereb Blood Flow Metab. 1992; 12: 621-628
        • Majumdar M.K.
        • Thiede M.A.
        • Mosca J.D.
        • Moorman M.
        • Gerson S.L.
        Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells.
        J Cell Physiol. 1998; 176: 57-66
        • Lang A.E.
        • Gill S.
        • Patel N.K.
        • Lozano A.
        • Nutt J.G.
        • Penn R.
        • et al.
        Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease.
        Ann Neurol. 2006; 59: 459-466
        • Young D.C.
        • Griffin J.D.
        Autocrine secretion of GM-CSF in acute myeloblastic leukemia.
        Blood. 1986; 68: 1178-1181
        • Janowska-Wieczorek A.
        • Majka M.
        • Ratajczak J.
        • Ratajczak M.Z.
        Autocrine/paracrine mechanisms in human hematopoiesis.
        Stem Cells. 2001; 19: 99-107
        • Majka M.
        • Janowska-Wieczorek A.
        • Ratajczak J.
        • Ehrenman K.
        • Pietrzkowski Z.
        • Kowalska M.A.
        • et al.
        Numerous growth factors, cytokines, and chemokines are secreted by human CD34(+) cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner.
        Blood. 2001; 97: 3075-3085
      1. Chen TS, Lai RC, Lee MM, Choo AB, Lee CN, Lim SK: Mesenchymal stem cell secretes microparticles enriched in pre-micrornas. Nucleic Acids Res;38:215-224.

        • Laurenzi M.A.
        • Beccari T.
        • Stenke L.
        • Sjolinder M.
        • Stinchi S.
        • Lindgren J.A.
        Expression of MRNA encoding neurotrophins and neurotrophin receptors in human granulocytes and bone marrow cells-enhanced neurotrophin-4 expression induced by LTB4.
        J Leukoc Biol. 1998; 64: 228-234
        • Hefti F.
        Neurotrophic factor therapy for nervous system degenerative diseases.
        J Neurobiol. 1994; 25: 1418-1435
        • Olson L.
        • Backman L.
        • Ebendal T.
        • Eriksdotter-Jonhagen M.
        • Hoffer B.
        • Humpel C.
        • et al.
        Role of growth factors in degeneration and regeneration in the central nervous system; clinical experiences with NGF in Parkinson's and Alzheimer's diseases.
        J Neurol. 1994; 242: S12-S15
        • Klein S.M.
        • Behrstock S.
        • McHugh J.
        • Hoffmann K.
        • Wallace K.
        • Suzuki M.
        • et al.
        GDNF delivery using human neural progenitor cells in a rat model of ALS.
        Hum Gene Ther. 2005; 16: 509-521
        • Zhang Y.
        • Pardridge W.M.
        Conjugation of brain-derived neurotrophic factor to a blood-brain barrier drug targeting system enables neuroprotection in regional brain ischemia following intravenous injection of the neurotrophin.
        Brain Res. 2001; 889: 49-56
        • Pittenger M.F.
        • Mackay A.M.
        • Beck S.C.
        • Jaiswal R.K.
        • Douglas R.
        • Mosca J.D.
        • et al.
        Multilineage potential of adult human mesenchymal stem cells.
        Science. 1999; 284: 143-147