Advertisement
Research Article| Volume 283, ISSUE 1-2, P143-148, August 15, 2009

Mitochondrial disorders, cognitive impairment and dementia

  • Author Footnotes
    1 Reference: 5th International Congress on Vascular Dementia, Budapest, November 2007.
    Josef Finsterer
    Correspondence
    Postfach 20, 1180 Vienna, Austria. Tel.: +43 1 71165; fax: +43 1 4781711.
    Footnotes
    1 Reference: 5th International Congress on Vascular Dementia, Budapest, November 2007.
    Affiliations
    Krankenanstalt Rudolfstiftung, Vienna, Austria
    Search for articles by this author
  • Author Footnotes
    1 Reference: 5th International Congress on Vascular Dementia, Budapest, November 2007.
Published:March 09, 2009DOI:https://doi.org/10.1016/j.jns.2009.02.347

      Abstract

      The organ most frequently affected in mitochondrial disorders, particularly respiratory chain diseases (RCDs), in addition to the skeletal muscle, is the central nervous system (CNS). CNS manifestations of RCDs comprise stroke-like episodes, epilepsy, migraine, ataxia, spasticity, movement disorders, psychiatric disorders, cognitive decline, or even dementia (mitochondrial dementia). So far mitochondrial dementia has been reported in MELAS, MERRF, LHON, CPEO, KSS, MNGIE, NARP, Leigh syndrome, and Alpers–Huttenlocher disease. Mitochondrial dementia not only results from mutations in the mitochondrial genome but also from mutations in nuclear genes, such as POLG, thymidine kinase 2, or DDP1. Often mitochondrial dementia starts with specific cognitive deficits, particularly in visual construction, attention, abstraction, or flexibility but without a general intellectual deterioration. Cognitive impairment in RCDs is diagnosed upon neuropsychological testing, imaging studies, such as MRI, PET, or MR-spectroscopy, CSF-investigations, or electroencephalography. Therapy of mitochondrial dementia relies on symptomatic measures. Only single patients profit from cholinesterase inhibitors or memantine, antioxidants, vitamins, coenzyme-Q, or other substitutes. Overall, mitochondrial dementia is an important differential of dementias and should be considered in patients with multi-system disease.

      Abbreviations:

      AAT (Achener Aphasia Test), AHS (Alpers–Huttenlocher disease), CNS (central nervous system), CPEO (chronic progressive external ophthalmoplegia), ECGF1 (thymidine kinase 2), EEG (electroencephalography), IOSCA (infantile onset spino-cerebellar ataxia), KSS (Kearns Sayre syndrome), LHON (Leber's hereditary optic neuropathy), LS (Leigh syndrome), MAS (Digit Span Memory Assessment Scale), MELAS (mitochondrial encephalomyopathy, lactacidosis, stroke-like episodes), MERRF (myoclonic epilepsy with ragged red fibres), MID (mitochondrial disorder), MILS (maternally inherited Leigh syndrome), MNGIE (mitochondrial neuro-gastro-intestinal encephalomyopathy), mtDNA (mitochondrial DNA), MRS (magnetic resonance spectroscopy), MTS (Mohr–Tranebjaerg syndrome), NARP (neurogenic weakness, ataxia and retinitis pigmentosa), nDNA (nuclear DNA), OXPHOS (oxidative phosphorylation), PDC (pyruvat-dehydrogenase complex), PET (positron-emission tomography), POLG (polymerase gamma), PS (Pearson syndrome), RCD (respiratory chain disorder), SANDO (sensory ataxia with neuropathy, dysarthria and ophthalmoparesis), SCAE (spinocerebellar ataxia and epilepsy), SLE (stroke-like episode), SPECT (single-photon-emission computed tomography), VEPs (visually-evoked potentials), WAIS (Wechsler Adult Intelligence Scale), WS (Wolfram syndrome)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Zeviani M.
        • Carelli V.
        Mitochondrial disorders.
        Curr Opin Neurol. 2007; 20: 564-571
        • Kartsounis L.D.
        • Troung D.D.
        • Morgan-Hughes J.A.
        • Harding A.E.
        The neuropsychological features of mitochondrial myopathies and encephalomyopathies.
        Arch Neurol. 1992; 49: 158-160
        • Leonard J.V.
        • Schapira A.H.V.
        Mitochondrial respiratory chain disorders I: mitochondrial DNA defects.
        Lancet. 2000; 355: 299-304
        • Schapira A.H.V.
        The “new” mitochondrial disorders.
        J Neurol Neurosurg Psychiatry. 2002; 72: 144-149
        • Van Goethem G.
        • Luoma P.
        • Rantamaki M.
        • Al Memar A.
        • Kaakkola S.
        • Hackman P.
        • et al.
        POLG mutations in neurodegenerative disorders with ataxia but no muscle involvement.
        Neurology. 2004; 63: 1251-1257
        • Dickerson B.C.
        • Holtzman D.
        • Grant P.E.
        • Tian D.
        Case records of the Massachusetts General Hospital. Case 36-2005. A 61-year-old woman with seizure, disturbed gait, and altered mental status.
        N Engl J Med. 2005; 353: 2271-2280
        • Bernier F.P.
        • Boneh A.
        • Dennett X.
        • Chow C.W.
        • Cleary M.A.
        • Thorburn D.R.
        Diagnostic criteria for respiratory chain disorders in adults and children.
        Neurology. 2002; 59: 1406-1411
        • Taylor R.W.
        • Schaefer A.M.
        • Barron M.J.
        • McFarland R.
        • Turnbull D.M.
        The diagnosis of mitochondrial muscle disease.
        Neuromuscul Disord. 2004; 14: 237-245
        • Walker U.A.
        • Collins S.
        • Byrne E.
        Respiratory chain encephalomyopathies: a diagnsotic classification.
        Eur Neurol. 1996; 36: 260-267
        • Wolf N.I.
        • Smeitink J.A.M.
        Mitochondrial disorders. A proposal for consensus diagnostic criteria in infants and children.
        Neurology. 2002; 59: 1402-1405
        • Turconi A.C.
        • Benti R.
        • Castelli E.
        • Pochintesta S.
        • Felisari G.
        • Comi G.
        • et al.
        Focal cognitive impairment in mitochondrial encephalomyopathies: a neuropsychological and neuroimaging study.
        J Neurol Sci. 1999; 170: 57-63
        • Crimi M.
        • Papadimitriou A.
        • Galbiati S.
        • Palamidou P.
        • Fortunato F.
        • Bordoni A.
        • et al.
        A new mitochondrial DNA mutation in ND3 gene causing severe Leigh syndrome with early lethality.
        Pediatr Res. 2004; 55: 842-846
        • Berio A.
        • Piazzi A.
        A case of Kearns–Sayre syndrome with autoimmune thyroiditis and possible Hashimoto encephalopathy.
        Panminerva Med. 2002; 44: 265-269
        • Koller H.
        • Kornischka J.
        • Neuen-Jacob E.
        • Saleh A.
        • von Giesen H.J.
        • Schmiedel J.
        • et al.
        Persistent organic personality change as rare psychiatric manifestation of MELAS syndrome.
        J Neurol. 2003; 250: 1501-1502
        • Graf W.D.
        • Marin-Garcia J.
        • Gao H.G.
        • Pizzo S.
        • Naviaux R.K.
        • Markusic D.
        • et al.
        Autism associated with the mitochondrial DNA G8363A transfer RNA(Lys) mutation.
        J Child Neurol. 2000; 15: 357-361
        • Oliveira G.
        • Diogo L.
        • Grazina M.
        • Garcia P.
        • Ataide A.
        • Marques C.
        • et al.
        Mitochondrial dysfunction in autism spectrum disorders: a population-based study.
        Dev Med Child Neurol. 2005; 47: 185-189
        • Jaksch M.
        • Lochmuller H.
        • Schmitt F.
        • Volpel B.
        • Obermaier-Kusser B.
        • Horvath R.
        A mutation in mt tRNALeu(UUR) causing a neuropsychiatric syndrome with depression and cataract.
        Neurology. 2001; 57: 1930-1931
        • Abe K.
        • Yoshimura H.
        • Tanaka H.
        • Fujita N.
        • Hikita T.
        • Sakoda S.
        Comparison of conventional and diffusion-weighted MRI and proton MR spectroscopy in patients with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like events.
        Neuroradiology. 2004; 46: 113-117
        • Finsterer J.
        Central nervous system manifestations of mitochondrial disorders.
        Acta Neurol Scand. 2006; 114: 217-238
        • Finsterer J.
        • Jarius C.
        • Baumgartner M.
        Parkinson's disease associated with impaired oxidative phosphorylation.
        Neuroradiology. 2001; 43: 997-1000
        • Finsterer J.
        • Kopsa W.
        Basal ganglia calcification in mitochondrial disorders.
        Metab Brain Dis. 2005; 20: 219-226
        • Bosbach S.
        • Kornblum C.
        • Schroder R.
        • Wagner M.
        Executive and visuospatial deficits in patients with chronic progressive external ophthalmoplegia and Kearns–Sayre syndrome.
        Brain. 2003; 126: 1231-1240
        • Molnár M.J.
        • Valikovics A.
        • Molnár S.
        • Trón L.
        • Diószeghy P.
        • Mechler F.
        • et al.
        Cerebral blood flow and glucose metabolism in mitochondrial disorders.
        Neurology. 2000; 55: 544-548
        • Moller H.E.
        • Kurlemann G.
        • Putzler M.
        • Wiedermann D.
        • Hilbich T.
        • Fiedler B.
        Magnetic resonance spectroscopy in patients with MELAS.
        J Neurol Sci. 2005; 229–230: 131-139
        • Grunwald F.
        • Zierz S.
        • Broich K.
        • Schumacher S.
        • Bockisch A.
        • Biersack H.J.
        HMPAO-SPECT imaging resembling Alzheimer-type dementia in mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS).
        J Nucl Med. 1990; 31: 1740-1742
        • Binder J.
        • Hofmann S.
        • Kreisel S.
        • Wohrle J.C.
        • Bazner H.
        • Krauss J.K.
        • et al.
        Clinical and molecular findings in a patient with a novel mutation in the deafness–dystonia peptide (DDP1) gene.
        Brain. 2003; 126: 1814-1820
        • Kaufmann P.
        • Shungu D.C.
        • Sano M.C.
        • Jhung S.
        • Engelstad K.
        • Mitsis E.
        • et al.
        Cerebral lactic acidosis correlates with neurological impairment in MELAS.
        Neurology. 2004; 62: 1297-1302
        • Sartor H.
        • Loose R.
        • Tucha O.
        • Klein H.E.
        • Lange K.W.
        MELAS: a neuropsychological and radiological follow-up study. Mitochondrial encephalomyopathy, lactic acidosis and stroke.
        Acta Neurol Scand. 2002; 106: 309-313
        • Scaglia F.
        • Northrop J.L.
        The mitochondrial myopathy encephalopathy, lactic acidosis with stroke-like episodes (MELAS) syndrome: a review of treatment options.
        CNS Drugs. 2006; 20: 443-464
        • Wang J.
        • Markesbery W.R.
        • Lovell M.A.
        Increased oxidative damage in nuclear and mitochondrial DNA in mild cognitive impairment.
        J Neurochem. 2006; 96: 825-832
        • Montirosso R.
        • Brambilla D.
        • Felisari G.
        • Sclaunich F.
        • Filipponi E.
        • Pozzoli U.
        • et al.
        Electrophysiological analysis of cognitive slowing in subjects with mitochondrial encephalomyopathy.
        J Neurol Sci. 2002; 194: 3-9
        • Dubeau F.
        • De Stefano N.
        • Zifkin B.G.
        • Arnold D.L.
        • Shoubridge E.A.
        Oxidative phosphorylation defect in the brains of carriers of the tRNAleu(UUR) A3243G mutation in a MELAS pedigree.
        Ann Neurol. 2000; 47: 179-185
        • Corona P.
        • Lamantea E.
        • Greco M.
        • Carrara F.
        • Agostino A.
        • Guidetti D.
        • et al.
        Novel heteroplasmic mtDNA mutation in a family with heterogeneous clinical presentations.
        Ann Neurol. 2002; 51: 118-122
        • Morimoto N.
        • Nagano I.
        • Deguchi K.
        • Morimoto N.
        • Nagano I.
        • Deguchi K.
        • et al.
        Leber hereditary optic neuropathy with chorea and dementia resembling Huntington disease.
        Neurology. 2004; 63: 2451-2452
        • Van Goethem G.
        • Mercelis R.
        • Lofgren
        • Van Goethem G.
        • Mercelis R.
        • Lofgren A.
        • et al.
        Patient homozygous for a recessive POLG mutation presents with features of MERRF.
        Neurology. 2003; 61: 1811-1813
        • Suzuki T.
        • Koizumi J.
        • Shiraishi H.
        • Ofuku K.
        • Sasaki M.
        • Hori T.
        • et al.
        Psychiatric disturbance in mitochondrial encephalomyopathy.
        J Neurol Neurosurg Psychiatry. 1989; 52: 920-922
        • Lang C.J.
        • Brenner P.
        • Heuss D.
        • Engelhardt A.
        • Reichmann H.
        • Seibel P.
        • et al.
        Neuropsychological status of mitochondrial encephalomyopathies.
        Eur J Neurol. 1995; 2: 171-176
        • Carod-Artal F.J.
        • Herrero M.D.
        • Lara M.C.
        • Lopez-Gallardo E.
        • Ruiz-Pesini E.
        • Marti R.
        • et al.
        Cognitive dysfunction and hypogonadotrophic hypogonadism in a Brazilian patient with mitochondrial neurogastrointestinal encephalomyopathy and a novel ECGF1 mutation.
        Eur J Neurol. 2007; 14: 581-585
        • Valente L.
        • Tiranti V.
        • Marsano R.M.
        • Malfatti E.
        • Fernandez-Vizarra E.
        • Donnini C.
        • et al.
        Infantile encephalopathy and defective mitochondrial DNA translation in patients with mutations of mitochondrial elongation factors EFG1 and EFTu.
        Am J Hum Genet. 2007; 80: 44-58
        • Van Maldergem L.
        • Trijbels F.
        • DiMauro S.
        • Sindelar P.J.
        • Musumeci O.
        • Janssen A.
        • et al.
        Coenzyme Q-responsive Leigh's encephalopathy in two sisters.
        Ann Neurol. 2002; 52: 750-754
        • Komura K.
        • Nakano K.
        • Ishigaki K.
        • Tarashima M.
        • Nakayama T.
        • Sasaki K.
        • et al.
        Creatine monohydrate therapy in a Leigh syndrome patient with A8344G mutation.
        Pediatr Int. 2006; 48: 409-412
        • Tóth G.
        • Morava E.
        • Bene J.
        • Selhorst J.J.
        • Overmars H.
        • Vreken P.
        • et al.
        Carnitine-responsive carnitine insufficiency in a case of mtDNA 8993T>C mutation associated Leigh syndrome.
        J Inherit Metab Dis. 2001; 24: 421-422