Advertisement
Research Article| Volume 283, ISSUE 1-2, P99-106, August 15, 2009

Blood-brain barrier alterations in ageing and dementia

Published:March 05, 2009DOI:https://doi.org/10.1016/j.jns.2009.02.321

      Abstract

      The current pathogenic scenarios of different types of dementia are based on a number of common mechanisms of neurodegeneration, such as accumulation of abnormal proteins (within or outside cells), mitochondrial dysfunction and oxidative stress, calcium homeostasis dysregulation, early synaptic disconnection and late apoptotic cell death. Ageing itself is associated with mild cognitive deterioration, probably due to subtle multifactorial changes resulting in a global decrease of a functional brain reserve. Increased age is a risk factor for neurodegeneration and key pathological features of dementia can also be found in aged brains. One of the underexplored brain structures in ageing and dementia is the blood-brain barrier (BBB), a complex cellular gate which regulates tightly the transport of molecules into and from the central nervous system. Disruption of this barrier is now increasingly documented not only in brain vascular disease but also in ageing and neurodegenerative disorders. To date, such evidence points mainly at an association between various dementia forms and disruption of the BBB. But, in reviewing such results, and taking into account the exquisite sensitivity of neuronal function to the composition of the interstitial brain fluid (IBF), which is regulated by the BBB, we would like to propose the existence of a possible causal link between alterations of BBB and conditions associated with cognitive decline.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bandopadhyay R.
        • Orte C.
        • Lawrenson J.G.
        • Reid A.R.
        • De Silva S.
        • Allt G.
        Contractile proteins in pericytes at the blood-brain and blood-retinal barriers.
        J Neurocytol. 2001; 30: 35-44
        • Abbott N.J.
        • Ronnback L.
        • Hannson E.
        Astrocyte–endothelial interactions at the blood-brain barrier.
        Nat Rev Neurosci. 2006; 7: 41-53
        • Kniesel U.
        • Wolburg H.
        Tight junctions of the blood-brain barrier.
        Cell Mol Neurobiol. 2000; 20: 57-76
        • Furuse M.
        • Hirase T.
        • Itoh M.
        • Nagafuchi A.
        • Yonemura S.
        • Tsukita S.
        Occludin: a novel integral membrane protein localizing at tight junctions.
        J Cell Biol. 1993; 123: 1777-1788
        • Furuse M.
        • Fujita K.
        • Hiiragi T.
        • Fujimoto K.
        • Tsukita S.
        Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin.
        J Cell Biol. 1998; 141: 1539-1550
        • Martìn-Padura I.
        • Lostaglio S.
        • Schneemann M.
        • Williams L.
        • Romano M.
        • Fruscella P.
        • et al.
        Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration.
        J Cell Biol. 1998; 142: 117-127
        • Persidsky Y.
        • Ramirez S.H.
        • Haorah J.
        • Kanmogne G.D.
        Blood-brain barrier: structural components and function under physiologic and pathologic conditions.
        J Neuroimmunol Pharmacol. 2006; 1: 223-236
        • Butt A.M.
        • Jones H.C.
        • Abbott N.J.
        Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study.
        J Physiol. 1990; 429: 47-62
        • Thuerauf N.
        • Fromm M.F.
        The role of the transporter P-glycoprotein for disposition and effects of centrally acting drugs and for the pathogenesis of CNS diseases.
        Eur Arch Psychiatry Clin Neurosci. 2006; 256: 281-286
        • Nielsen S.
        • Nagelhus E.A.
        • Amiry-Moghaddam M.
        • Bourque C.
        • Agre P.
        • Ottersen O.P.
        Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain.
        J Neurosci. 1997; 17: 171-180
        • Yool A.J.
        Aquaporins: multiple roles in the central nervous system.
        Neuroscientist. 2007; 13: 470-485
        • Minn A.
        • Ghersi-Egea J.F.
        • Perrin R.
        • Leininger B.
        • Siest G.
        Drug metabolizing enzymes in the brain and cerebral microvessels.
        Brain Res Brain Res Rev. 1991; 16: 65-82
        • Rubin L.L.
        • Barbu K.
        • Bard F.
        • Cannon C.
        • Hall D.E.
        • Horner H.
        • et al.
        Differentiation of brain endothelial cells in cell culture.
        Ann N Y Acad Sci. 1991; 633: 420-425
        • Ramsauer M.
        • Krause D.
        • Dermietzel R.
        Angiogenesis of the blood-brain barrier in vitro and the function of cerebral pericytes.
        FASEB J. 2002; 16: 1274-1276
        • Kose N.
        • Asashima T.
        • Muta M.
        • Iizasa H.
        • Sai Y.
        • Terasaki T.
        • et al.
        Altered expression of basement membrane-related molecules in rat brain pericyte, endothelial, and astrocyte cell lines after transforming growth factor-beta1 treatment.
        Drug Metab Pharmacokinet. 2007; 22: 255-266
        • Góra-Kupilas K.
        • Jośko J.
        The neuroprotective function of vascular endothelial growth factor (VEGF).
        Folia Neuropathol. 2005; 43: 31-39
        • Su J.J.
        • Osoegawa M.
        • Matsuoka T.
        • Minohara M.
        • Tanaka M.
        • Ishizu T.
        • et al.
        Upregulation of vascular growth factors in multiple sclerosis: correlation with MRI findings.
        J Neurol Sci. 2006; 243: 21-30
        • Sobue K.
        • Yamamoto N.
        • Yoneda K.
        • Hodgson M.E.
        • Yamashiro K.
        • Tsuruoka N.
        • et al.
        Induction of blood-brain barrier properties in immortalized bovine brain endothelial cells by astrocytic factors.
        Neurosci Res. 1999; 35: 155-164
        • Utsumi H.
        • Chiba H.
        • Kamimura Y.
        • Osanai M.
        • Igarashi Y.
        • Tobioka H.
        • et al.
        Expression of GFRalpha-1, receptor for GDNF, in rat brain capillary during postnatal development of the BBB.
        Am J Physiol Cell Physiol. 2000; 279: C361-368
        • Braet K.
        • Cabooter L.
        • Paemeleire K.
        • Leybaert L.
        Calcium signal communication in the central nervous system.
        Biol Cell. 2004; 96: 79-91
        • Simard M.
        • Arcuino G.
        • Takano T.
        • Liu Q.S.
        • Nedergaard M.
        Signaling at the gliovascular interface.
        J Neurosci. 2003; 23: 9254-9262
        • Wosik K.
        • Biernacki K.
        • Khouzam M.P.
        • Prat A.
        Death receptor expression and function at the human blood brain barrier.
        J Neurol Sci. 2007; 259: 53-60
        • Yu C.
        • Kastin A.J.
        • Tu H.
        • Waters S.
        • Pan W.
        TNF activates P-glycoprotein in cerebral microvascular endothelial cells.
        Cell Physiol Biochem. 2007; 20: 853-858
        • Simpson J.E.
        • Fernando M.S.
        • Clark L.
        • Ince P.G.
        • Matthews F.
        • Forster G.
        • et al.
        White matter lesions in an unselected cohort of the elderly: astrocytic, microglial and oligodendrocyte precursor cell responses.
        Neuropathol Appl Neurobiol. 2007; 33: 410-419
        • Frisoni G.B.
        • Galluzzi S.
        • Pantoni L.
        • Filippi M.
        The effect of white matter lesions on cognition in the elderly—small but detectable.
        Nat Clin Pract Neurol. 2007; 3: 620-627
        • Farrall A.J.
        • Wardlaw J.M.
        Blood-brain barrier: ageing and microvascular disease — systematic review and meta-analysis.
        Neurobiol Aging. Sep 13 2007; ([Electronic publication ahead of print] PMID: 17869382)
        • Hosokawa M.
        • Ueno M.
        Aging of blood-brain barrier and neuronal cells of eye and ear in SAM mice.
        Neurobiol Aging. 1999; 20: 117-123
        • Vorbrodt A.W.
        • Dobrogowska D.H.
        • Ueno M.
        • Tarnawski M.
        A quantitative immunocytochemical study of blood-brain barrier to endogenous albumin in cerebral cortex and hippocampus of senescence-accelerated mice (SAM).
        Folia Histochem Cytobiol. 1995; 33: 229-237
        • Pelegrí C.
        • Canudas A.M.
        • del Valle J.
        • Casadesus G.
        • Smith M.A.
        • Camins A.
        • et al.
        Increased permeability of blood-brain barrier on the hippocampus of a murine model of senescence.
        Mech Ageing Dev. 2007; 128: 522-528
        • Yasui F.
        • Ishibashi M.
        • Matsugo S.
        • Kojo S.
        • Oomura Y.
        • Sasaki K.
        Brain lipid hydroperoxide level increases in senescence-accelerated mice at an early age.
        Neurosci Lett. 2003; 350: 66-68
        • Alvarez-García O.
        • Vega-Naredo I.
        • Sierra V.
        • Caballero B.
        • Tomás-Zapico C.
        • Camins A.
        • et al.
        Elevated oxidative stress in the brain of senescence-accelerated mice at 5 months of age.
        Biogerontology. 2006; 7: 43-52
        • Kurokawa T.
        • Asada S.
        • Nishitani S.
        • Hazeki O.
        Age-related changes in manganese superoxide dismutase activity in the cerebral cortex of senescence-accelerated prone and resistant mouse.
        Neurosci Lett. 2001; 298: 135-138
        • Okatani Y.
        • Wakatsuki A.
        • Reiter R.J.
        • Miyahara Y.
        Melatonin reduces oxidative damage of neural lipids and proteins in senescence-accelerated mouse.
        Neurobiol Aging. 2002; 23: 639-644
        • Morley J.E.
        • Kumar V.B.
        • Bernardo A.E.
        • Farr S.A.
        • Uezu K.
        • Tumosa N.
        • et al.
        Beta-amyloid precursor polypeptide in SAMP8 mice affects learning and memory.
        Peptides. 2000; 21: 1761-1767
        • Chan-Ling T.
        • Hughes S.
        • Baxter L.
        • Rosinova E.
        • McGregor I.
        • Morcos Y.
        • et al.
        Inflammation and breakdown of the blood-retinal barrier during “physiological aging” in the rat retina: a model for CNS aging.
        Microcirculation. 2007; 14: 63-76
        • Dringen R.
        Oxidative and antioxidative potential of brain microglial cells.
        Antioxid Redox Signal. 2005; 7: 1223-1233
        • Banks W.A.
        • Moinuddin A.
        • Morley J.E.
        Regional transport of TNF-alpha across the blood-brain barrier in young ICR and young and aged SAMP8 mice.
        Neurobiol Aging. 2001; 22: 671-676
        • McLay R.N.
        • Kastin A.J.
        • Zadina J.E.
        Passage of interleukin-1-beta across the blood-brain barrier is reduced in aged mice: a possible mechanism for diminished fever in aging.
        Neuroimmunomodulation. 2000; 8: 148-153
        • Vorbrodt A.W.
        • Dobrogowska D.H.
        • Meeker H.C.
        • Carp R.I.
        Immunogold study of regional differences in the distribution of glucose transporter (GLUT-1) in mouse brain associated with physiological and accelerated aging and scrapie infection.
        J Neurocytol. Sep 1999; 28: 711-719
        • Gschanes A.
        • Boado R.
        • Sametz W.
        • Windisch M.
        The drug cerebrolysin and its peptide fraction E021 increase the abundance of the blood-brain barrier GLUT1 glucose transporter in brains of young and old rats.
        Histochem J. Feb 2000; 32: 71-77
        • Connor J.R.
        • Menzies S.L.
        • St Martin S.M.
        • Mufson E.J.
        Cellular distribution of transferrin, ferritin, and iron in normal and aged human brains.
        J Neurosci Res. 1990; 27: 595-611
        • Jeong S.Y.
        • David S.
        Age-related changes in iron homeostasis and cell death in the cerebellum of ceruloplasmin-deficient mice.
        J Neurosci. 2006; 26: 9810-9819
        • Aisen P.
        • Enns C.
        • Wessling-Resnick M.
        Chemistry and biology of eukaryotic iron metabolism.
        Int J Biochem Cell Biol. 2001; 33: 940-959
        • Moos T.
        • Oates P.S.
        • Morgan E.H.
        Expression of transferrin mRNA in rat oligodendrocytes is iron-independent and changes with increasing age.
        Nutr Neurosci. 2001; 4: 15-23
        • Dringen R.
        • Bishop G.M.
        • Koeppe M.
        • Dang T.N.
        • Robinson S.R.
        The pivotal role of astrocytes in the metabolism of iron in the brain.
        Neurochem Res. 2007; 32: 1884-1890
        • Toornvliet R.
        • van Berckel B.N.
        • Luurtsema G.
        • Lubberink M.
        • Geldof A.A.
        • Bosch T.M.
        • et al.
        Effect of age on functional P-glycoprotein in the blood-brain barrier measured by use of (R)-[(11)C]verapamil and positron emission tomography.
        Clin Pharmacol Ther. 2006; 79: 540-548
        • Bake S.
        • Sohrabji F.
        17beta-estradiol differentially regulates blood-brain barrier permeability in young and aging female rats.
        Endocrinology. 2004; 145: 5471-5475
        • Gustafson D.R.
        • Karlsson C.
        • Skoog I.
        • Rosengren L.
        • Lissner L.
        • Blennow K.
        Mid-life adiposity factors relate to blood-brain barrier integrity in late life.
        J Intern Med. 2007; 262: 643-650
        • Dietrich M.O.
        • Spuch C.
        • Antequera D.
        • Rodal I.
        • de Yébenes J.G.
        • Molina J.A.
        • et al.
        Megalin mediates the transport of leptin across the blood-CSF barrier.
        Neurobiol Aging. Feb 26 2007; ([Electronic publication ahead of print] PMID: 17324488)
        • Banks W.A.
        • Farrell C.L.
        Impaired transport of leptin across the blood-brain barrier in obesity is acquired and reversible.
        Am J Physiol Endocrinol Metab. 2003; 285: E10-15
        • Muzumdar R.H.
        • Ma X.
        • Yang X.
        • Atzmon G.
        • Barzilai N.
        Central resistance to the inhibitory effects of leptin on stimulated insulin secretion with aging.
        Neurobiol Aging. Sep 2006; 27: 1308-1314
        • Messier C.
        • Teutenberg K.
        The role of insulin, insulin growth factor, and insulin-degrading enzyme in brain aging and Alzheimer's disease.
        Neural Plast. 2005; 12: 311-328
        • Shiiki T.
        • Ohtsuki S.
        • Kurihara A.
        • Naganuma H.
        • Nishimura K.
        • Tachikawa M.
        • et al.
        Brain insulin impairs amyloid-beta(1–40) clearance from the brain.
        J Neurosci. 2004; 24: 9632-9637
        • Korczyn A.D.
        • Vakhapova V.
        The prevention of the dementia epidemic.
        J Neurol Sci. 2007; 257: 2-4
        • Hajjar I.
        • Keown M.
        • Frost B.
        Antihypertensive agents for aging patients who are at risk for cognitive dysfunction.
        Curr Hypertens Rep. Dec 2005; 7: 466-473
        • Wardlaw J.M.
        • Sandercock P.A.
        • Dennis M.S.
        • Starr J.
        Is breakdown of the blood-brain barrier responsible for lacunar stroke, leukoaraiosis, and dementia?.
        Stroke. 2003; 34: 806-812
        • Hom S.
        • Fleegal M.A.
        • Egleton R.D.
        • Campos C.R.
        • Hawkins B.T.
        • Davis T.P.
        Comparative changes in the blood-brain barrier and cerebral infarction of SHR and WKY rats.
        Am J Physiol Regul Integr Comp Physiol. 2007; 292: R1881-1892
        • Qi X.
        • Inagaki K.
        • Sobel R.A.
        • Mochly-Rosen D.
        Sustained pharmacological inhibition of deltaPKC protects against hypertensive encephalopathy through prevention of blood-brain barrier breakdown in rats.
        J Clin Invest. 2008; 118: 173-182
        • Chou W.H.
        • Messing R.O.
        Hypertensive encephalopathy and the blood-brain barrier: is deltaPKC a gatekeeper?.
        J Clin Invest. 2008; 118: 17-20
        • Bright R.
        • Steinberg G.K.
        • Mochly-Rosen D.
        DeltaPKC mediates microcerebrovascular dysfunction in acute ischemia and in chronic hypertensive stress in vivo.
        Brain Res. 2007; 1144: 146-155
        • Siflinger-Birnboim A.
        • Johnson A.
        Protein kinase C modulates pulmonary endothelial permeability: a paradigm for acute lung injury.
        Am J Physiol Lung Cell Mol Physiol. 2003; 284: L435-451
        • Ramírez M.M.
        • Kim D.D.
        • Durán W.N.
        Protein kinase C modulates microvascular permeability through nitric oxide synthase.
        Am J Physiol. 1996; 271: H1702-1705
        • Euser A.G.
        • Bullinger L.
        • Cipolla M.J.
        Magnesium sulphate treatment decreases blood-brain barrier permeability during acute hypertension in pregnant rats.
        Exp Physiol. Feb 2008; 93: 254-261
        • Muresanu D.F.
        • Sharma H.S.
        Chronic hypertension aggravates heat stress induced cognitive dysfunction and brain pathology: an experimental study in the rat, using growth hormone therapy for possible neuroprotection.
        Ann N Y Acad Sci. 2007; 1122: 1-22
        • Ott A.
        • Stolk R.P.
        • Hofman A.
        • van Harskamp F.
        • Grobbee D.E.
        • Breteler M.M.
        Association of diabetes mellitus and dementia: the Rotterdam Study.
        Diabetologia. 1996; 39: 1392-1397
        • Yoshitake T.
        • Kiyohara Y.
        • Kato I.
        • Ohmura T.
        • Iwamoto H.
        • Nakayama K.
        • et al.
        Incidence and risk factors of vascular dementia and Alzheimer's disease in a defined elderly Japanese population: the Hisayama Study.
        Neurology. 1995; 45: 1161-1168
        • Hawkins B.T.
        • Egleton R.D.
        Pathophysiology of the blood-brain barrier: animal models and methods.
        Curr Top Dev Biol. 2008; 80: 277-309
        • Hou W.K.
        • Xian Y.X.
        • Zhang L.
        • Lai H.
        • Hou X.G.
        • Xu Y.X.
        • et al.
        Influence of blood glucose on the expression of glucose trans-porter proteins 1 and 3 in the brain of diabetic rats.
        Chin Med J (Engl). 2007; 120: 1704-1709
        • Maeng H.J.
        • Kim M.H.
        • Jin H.E.
        • Shin S.M.
        • Tsuruo T.
        • Kim S.G.
        • et al.
        Functional induction of P-glycoprotein in the blood-brain barrier of streptozotocin-induced diabetic rats: evidence for the involvement of nuclear factor-kappaB, a nitrosative stress-sensitive transcription factor, in the regulation.
        Drug Metab Dispos. 2007; 35: 1996-2005
        • Hawkins B.T.
        • Lundeen T.F.
        • Norwood K.M.
        • Brooks H.L.
        • Egleton R.D.
        Increased blood-brain barrier permeability and altered tight junctions in experimental diabetes in the rat: contribution of hyperglycaemia and matrix metalloproteinases.
        Diabetologia. 2007; 50: 202-211
        • Romanitan M.O.
        • Popescu B.O.
        • Winblad B.
        • Bajenaru O.A.
        • Bogdanovic N.
        Occludin is overexpressed in Alzheimer's disease and vascular dementia.
        J Cell Mol Med. 2007; 11: 569-579
        • Huber J.D.
        • VanGilder R.L.
        • Houser K.A.
        Streptozotocin-induced diabetes progressively increases blood-brain barrier permeability in specific brain regions in rats.
        Am J Physiol Heart Circ Physiol. 2006; 291: H2660-2668
        • Savidge T.C.
        • Sofroniew M.V.
        • Neunlist M.
        Starring roles for astroglia in barrier pathologies of gut and brain.
        Lab Invest. 2007; 87: 731-736
        • Stella F.
        • Banzato C.E.
        • Gasparetto Sé E.V.
        • Scudeler J.L.
        • Pacheco J.L.
        • Kajita R.T.
        Risk factors for vascular dementia in elderly psychiatric outpatients with preserved cognitive functions.
        J Neurol Sci. 2007; 257: 247-249
        • Björkhem I.
        • Meaney S.
        Brain cholesterol: long secret life behind a barrier.
        Arterioscler Thromb Vasc Biol. 2004; 24: 806-815
        • Pfrieger F.W.
        Cholesterol homeostasis and function in neurons of the central nervous system.
        Cell Mol Life Sci. 2003; 60: 1158-1171
        • Björkhem I.
        Crossing the barrier: oxysterols as cholesterol transporters and metabolic modulators in the brain.
        J Intern Med. 2006; 260: 493-508
        • Ghribi O.
        • Golovko M.Y.
        • Larsen B.
        • Schrag M.
        • Murphy E.J.
        Deposition of iron and beta-amyloid plaques is associated with cortical cellular damage in rabbits fed with long-term cholesterol-enriched diets.
        J Neurochem. 2006; 99: 438-449
        • Crisby M.
        • Rahman A.
        • Sylvén C.
        • Winblad B.
        • Schultzberg M.
        Effects of high cholesterol diet on gliosis in apolipoprotein E knockout mice. Implications for Alzheimer's disease and stroke.
        Neurosci Lett. 2004; 369: 87-92
        • Rahman S.M.A.
        • Van Dam A.M.
        • Schultzberg M.
        • Crisby M.
        High cholesterol diet results in increased expression of interleukin-6 and caspase-1 in the brain of apolipoprotein E knockout and wild type mice.
        J Neuroimmunol. 2005; 169: 59-67
        • Rahman A.
        • Akterin S.
        • Flores-Morales A.
        • Crisby M.
        • Kivipelto M.
        • Schultzberg M.
        • et al.
        High cholesterol diet induces tau hyperphosphorylation in apolipoprotein E deficient mice.
        FEBS Lett. 2005; 579: 6411-6416
        • Mooradian A.D.
        • Haas M.J.
        • Batejko O.
        • Hovsepyan M.
        • Feman S.S.
        Statins ameliorate endothelial barrier permeability changes in the cerebral tissue of streptozotocin-induced diabetic rats.
        Diabetes. 2005; 54: 2977-2982
        • Prasad R.
        • Giri S.
        • Nath N.
        • Singh I.
        • Singh A.K.
        Inhibition of phosphoinositide 3 kinase-Akt (protein kinase B)-nuclear factor-kappa B pathway by lovastatin limits endothelial–monocyte cell interaction.
        J Neurochem. 2005; 94: 204-214
        • Hempel A.
        • Lindschau C.
        • Maasch C.
        • Mahn M.
        • Bychkov R.
        • Noll T.
        • et al.
        Calcium antagonists ameliorate ischemia-induced endothelial cell permeability by inhibiting protein kinase C.
        Circulation. 1999; 99: 2523-2529
        • Abbruscato T.J.
        • Davis T.P.
        Combination of hypoxia/aglycemia compromises in vitro blood-brain barrier integrity.
        J Pharmacol Exp Ther. 1999; 289: 668-675
        • Brown R.C.
        • Davis T.P.
        Calcium modulation of adherens and tight junction function: a potential mechanism for blood-brain barrier disruption after stroke.
        Stroke. 2002; 33: 1706-1711
        • Volpe M.
        • Cosentino F.
        Abnormalities of endothelial function in the pathogenesis of stroke: the importance of endothelin.
        J Cardiovasc Pharmacol. 2000; 35: S45-48
        • McCarron R.M.
        • Chen Y.
        • Tomori T.
        • Strasser A.
        • Mechoulam R.
        • Shohami E.
        • et al.
        Endothelial-mediated regulation of cerebral microcirculation.
        J Physiol Pharmacol. 2006; 57: 133-144
        • Zinkel J.L.
        Postischemic reperfusion: ultrastructural blood-brain barrier and hemodynamic correlative changes in an awake model of transient forebrain ischemia.
        Neurosurgery. Nov 2006; 59: E1152
        • Lee J.M.
        • Zhai G.
        • Liu Q.
        • Gonzales E.R.
        • Yin K.
        • Yan P.
        • et al.
        Vascular permeability precedes spontaneous intracerebral hemorrhage in stroke-prone spontaneously hypertensive rats.
        Stroke. 2007; 38: 3289-3291
        • Popescu B.O.
        Still debating a cause and diagnostic criteria for Alzheimer's disease.
        J Cell Mol Med. 2007; 11: 1225-1226
        • Cedazo-Mínguez A.
        Apolipoprotein E and Alzheimer's disease: molecular mechanisms and therapeutic opportunities.
        J Cell Mol Med. 2007; 11: 1227-1238
        • Oprica M.
        • Hjorth E.
        • Spulber S.
        • Popescu B.O.
        • Ankarcrona M.
        • Winblad B.
        • et al.
        Studies on brain volume, Alzheimer-related proteins and cytokines in mice with chronic overexpression of IL-1 receptor antagonist.
        J Cell Mol Med. 2007; 11: 810-825
        • Reid P.C.
        • Urano Y.
        • Kodama T.
        • Hamakubo T.
        Alzheimer's disease: cholesterol, membrane rafts, isoprenoids and statins.
        J Cell Mol Med. 2007; 11: 383-392
        • Forero D.A.
        • Casadesus G.
        • Perry G.
        • Arboleda H.
        Synaptic dysfunction and oxidative stress in Alzheimer's disease: emerging mechanisms.
        J Cell Mol Med. 2006; 10: 796-805
        • Popescu B.O.
        • Cedazo-Minguez A.
        • Benedikz E.
        • Nishimura T.
        • Winblad B.
        • Ankarcrona M.
        • et al.
        Gamma-secretase activity of presenilin 1 regulates acetylcholine muscarinic receptor-mediated signal transduction.
        J Biol Chem. 2004; 279: 6455-6464
        • Popescu B.O.
        • Ankarcrona M.
        Mechanisms of cell death in Alzheimer's disease: role of presenilins.
        J Alzheimers Dis. 2004; 6: 123-128
        • Desai B.S.
        • Monahan A.J.
        • Carvey P.M.
        • Hendey B.
        Blood-brain barrier pathology in Alzheimer's and Parkinson's disease: implications for drug therapy.
        Cell Transplant. 2007; 16: 285-299
        • Deane R.
        • Wu Z.
        • Zlokovic B.V.
        RAGE (yin) versus LRP (yang) balance regulates Alzheimer amyloid beta-peptide clearance through transport across the blood-brain barrier.
        Stroke. 2004; 35: 2628-2631
        • Deane R.
        • Du Yan S.
        • Submamaryan R.K.
        • LaRue B.
        • Jovanovic S.
        • Hogg E.
        • et al.
        RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain.
        Nat Med. 2003; 9: 907-913
        • Zlokovic B.V.
        Clearing amyloid through the blood-brain barrier.
        J Neurochem. 2004; 89: 807-811
        • Deane R.
        • Sagare A.
        • Hamm K.
        • Parisi M.
        • LaRue B.
        • Guo H.
        • et al.
        IgG-assisted age-dependent clearance of Alzheimer's amyloid beta peptide by the blood-brain barrier neonatal Fc receptor.
        J Neurosci. 2005; 25: 11495-11503
        • Cirrito J.R.
        • Deane R.
        • Fagan A.M.
        • Spinner M.L.
        • Parsadanian M.
        • Finn M.B.
        • et al.
        P-glycoprotein deficiency at the blood-brain barrier increases amyloid-β deposition in an Alzheimer disease mouse model.
        J Neurosci. 2005; 25: 11495-11503
        • Ujiie M.
        • Dickstein D.L.
        • Carlow D.A.
        • Jefferies W.A.
        Blood-brain barrier permeability precedes senile plaque formation in an Alzheimer disease model.
        Microcirculation. 2003; 10: 463-470
        • Banks W.A.
        • Terrell B.
        • Farr S.A.
        • Robinson S.M.
        • Nonaka N.
        • Morley J.E.
        Passage of amyloid beta protein antibody across the blood-brain barrier in a mouse model of Alzheimer's disease.
        Peptides. 2002; 23: 2223-2226
        • Methia N.
        • André P.
        • Hafezi-Moghadam A.
        • Economopoulos M.
        • Thomas K.L.
        • Wagner D.D.
        ApoE deficiency compromises the blood brain barrier especially after injury.
        Mol Med. 2001; 7: 810-815
        • Hafezi-Moghadam A.
        • Thomas K.L.
        • Wagner D.D.
        ApoE deficiency leads to a progressive age-dependent blood-brain barrier leakage.
        Am J Physiol Cell Physiol. 2007; 292: C1256-1262
        • Mulder M.
        • Blokland A.
        • van den Berg D.J.
        • Schulten H.
        • Bakker A.H.
        • Terwel D.
        • et al.
        Apolipoprotein E protects against neuropathology induced by a high-fat diet and maintains the integrity of the blood-brain barrier during aging.
        Lab Invest. 2001; 81: 953-960
        • Shibata M.
        • Yamada S.
        • Kumar S.R.
        • Calero M.
        • Bading J.
        • Frangione B.
        • et al.
        Clearance of Alzheimer's amyloid-ss(1–40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier.
        J Clin Invest. 2000; 106: 1489-1499
        • Algotsson A.
        • Winblad B.
        The integrity of the blood-brain barrier in Alzheimer's disease.
        Acta Neurol Scand. 2007; 115: 403-408
        • Bowman G.L.
        • Kaye J.A.
        • Moore M.
        • Waichunas D.
        • Carlson N.E.
        • Quinn J.F.
        Blood-brain barrier impairment in Alzheimer disease: stability and functional significance.
        Neurology. 2007; 68: 1809-1814
        • Forman M.S.
        • Lal D.
        • Zhang B.
        • Dabir D.V.
        • Swanson E.
        • Lee V.M.
        • et al.
        Transgenic mouse model of tau pathology in astrocytes leading to nervous system degeneration.
        J Neurosci. Apr 6 2005; 25: 3539-3550
        • Dickstein D.L.
        • Biron K.E.
        • Ujiie M.
        • Pfeifer C.G.
        • Jeffries A.R.
        • Jefferies W.A.
        Abeta peptide immunization restores blood-brain barrier integrity in Alzheimer disease.
        FASEB J. Mar 2006; 20: 426-433
        • Schiera G.
        • Proia P.
        • Alberti C.
        • Mineo M.
        • Savettieri G.
        • Di Liegro I.
        Neurons produce FGF2 and VEGF and secrete them at least in part by shedding extracellular vesicles.
        J Cell Mol Med. 2007; 11: 1384-1394
        • Lok J.
        • Gupta P.
        • Guo S.
        • Kim W.J.
        • Whalen M.J.
        • van Leyen K.
        • et al.
        Cell–cell signaling in the neurovascular unit.
        Neurochem Res. 2007; 32: 2032-2045
        • Rite I.
        • Machado A.
        • Cano J.
        • Venero J.L.
        Blood-brain barrier disruption induces in vivo degeneration of nigral dopaminergic neurons.
        J Neurochem. 2007; 101: 1567-1582
        • Whitton P.S.
        Inflammation as a causative factor in the aetiology of Parkinson's disease.
        Br J Pharmacol. 2007; 150: 963-976
        • Kortekaas R.
        • Leenders K.L.
        • van Oostrom J.C.
        • Vaalburg W.
        • Bart J.
        • Willemsen A.T.
        • et al.
        Blood-brain barrier dysfunction in parkinsonian midbrain in vivo.
        Ann Neurol. 2005; 57: 176-179
        • Yokel R.A.
        Blood-brain barrier flux of aluminum, manganese, iron and other metals suspected to contribute to metal-induced neurodegeneration.
        J Alzheimers Dis. 2006; 10: 223-253
        • Toescu E.C.
        Normal brain ageing: models and mechanisms.
        Philos Trans R Soc Lond B Biol Sci. 2005; 360: 2347-2354