Advertisement
Research Article| Volume 283, ISSUE 1-2, P21-27, August 15, 2009

The role of kynurenines in disorders of the central nervous system: Possibilities for neuroprotection

Published:March 06, 2009DOI:https://doi.org/10.1016/j.jns.2009.02.326

      Abstract

      The metabolism of tryptophan mostly proceeds through the kynurenine pathway. The biochemical reaction includes both an agonist (quinolinic acid) at the N-methyl-d-aspartate receptor and an antagonist (kynurenic acid). Besides the N-methyl-d-aspartate antagonism, an important feature of kynurenic acid is the blockade of the alpha7-nicotinic acetylcholine receptor and its influence on the alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid receptor.
      Kynurenic acid has proven to be neuroprotective in several experimental settings. On the other hand, quinolinic acid is a potent neurotoxin with an additional and marked free radical-producing property.
      In consequence of these various receptor activities, the possible roles of these substances in various neurological disorders have been proposed. Moreover, the possibility of influencing the kynurenine pathway to reduce quinolinic acid and increase the level of kynurenic acid in the brain offers a new target for drug action designed to change the balance, decreasing excitotoxins and enhancing neuroprotectants. This review surveys both the early and the current research in this field, focusing on the possible therapeutic effects of kynurenines.

      Abbreviations:

      3-HA (3-hydroxyanthranilic acid), 3-HK (3-hydroxykynurenine), AD (Alzheimer's disease), AMPA (alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid), ANA (anthranilic acid), BBB (blood-brain barrier), CSD (cortical spreading depression), EAA (excitatory amino acid), HD (Huntington's disease), HIV (human immunodeficiency virus), IDO (indoleamine 2,3-dioxygenase), KAT (kynurenine aminotransferase), KP (kynurenine pathway), KYNA (kynurenic acid), L-KYN (L-Kynurenine), NAD (nicotine adenine dinucleotide), NADP (NAD phosphate), NMDA (N-methyl-d-aspartate), PD (Parkinson's disease), QUIN (quinolinic acid), TRP (tryptophan), α7-nACh (alpha7-nicotinic acetylcholine), α-MTRP (alpha-[11C]me-L-TRP)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Beadle G.W.
        • Mitchell H.K.
        • Nyc J.F.
        Kynurenine as an intermediate in the formation of nicotinic acid from tryptophane by neurospora.
        Proc Natl Acad Sci U S A. 1947; 33: 155-158
        • Guillemin G.J.
        • Smith D.G.
        • Smythe G.A.
        • Armati P.J.
        • Brew B.J.
        Expression of the kynurenine pathway enzymes in human microglia and macrophages.
        Adv Exp Med Biol. 2003; 527: 105-112
        • Guillemin G.J.
        • Kerr S.J.
        • Smythe G.A.
        • Smith D.G.
        • Kapoor V.
        • Armati P.J.
        • et al.
        Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection.
        J Neurochem. 2001; 78: 842-853
        • Fukui S.
        • Schwarcz R.
        • Rapoport S.I.
        • Takada Y.
        • Smith Q.R.
        Blood-brain barrier transport of kynurenines: implications for brain synthesis and metabolism.
        J Neurochem. 1991; 56: 2007-2017
      1. Riederer, P., Kruzik, P., Kienzl, E., Kleinberger, G., Jellinger, K., and Wesemann, W. Central aminergic function and its disturbance by hepatic disease: the current status of l-valine pharmacotherapy in metabolic coma. 1981;143–182.

        • Lapin I.P.
        Stimulant and convulsive effects of kynurenines injected into brain ventricles in mice.
        J Neural Transm. 1978; 42: 37-43
        • Heyes M.P.
        • Saito K.
        • Chen C.Y.
        • Proescholdt M.G.
        • Nowak Jr., T.S.
        • Li J.
        • et al.
        Species heterogeneity between gerbils and rats: quinolinate production by microglia and astrocytes and accumulations in response to ischemic brain injury and systemic immune activation.
        J Neurochem. 1997; 69: 1519-1529
        • Saito K.
        • Nowak Jr., T.S.
        • Suyama K.
        • Quearry B.J.
        • Saito M.
        • Crowley J.S.
        • et al.
        Kynurenine pathway enzymes in brain: responses to ischemic brain injury versus systemic immune activation.
        J Neurochem. 1993; 61: 2061-2070
        • Vecsei L.
        • Beal M.F.
        Comparative behavioral and pharmacological studies with centrally administered kynurenine and kynurenic acid in rats.
        Eur J Pharmacol. 1991; 196: 239-246
        • Giles G.I.
        • Collins C.A.
        • Stone T.W.
        • Jacob C.
        Electrochemical and in vitro evaluation of the redox-properties of kynurenine species.
        Biochem Biophys Res Commun. 2003; 300: 719-724
        • Gigler G.
        • Szenasi G.
        • Simo A.
        • Levay G.
        • Harsing Jr., L.G.
        • Sas K.
        • et al.
        Neuroprotective effect of L-kynurenine sulfate administered before focal cerebral ischemia in mice and global cerebral ischemia in gerbils.
        Eur J Pharmacol. 2007; 564: 116-122
        • Luchowska E.
        • Luchowski P.
        • Sarnowska A.
        • Wielosz M.
        • Turski W.A.
        • Urbanska E.M.
        Endogenous level of kynurenic acid and activities of kynurenine aminotransferases following transient global ischemia in the gerbil hippocampus.
        Pol J Pharmacol. 2003; 55: 443-447
        • Smith D.H.
        • Okiyama K.
        • Thomas M.J.
        • McIntosh T.K.
        Effects of the excitatory amino acid receptor antagonists kynurenate and indole-2-carboxylic acid on behavioral and neurochemical outcome following experimental brain injury.
        J Neurosci. 1993; 13: 5383-5392
        • Okuno E.
        • Schmidt W.
        • Parks D.A.
        • Nakamura M.
        • Schwarcz R.
        Measurement of rat brain kynurenine aminotransferase at physiological kynurenine concentrations.
        J Neurochem. 1991; 57: 533-540
        • Erhardt S.
        • Schwieler L.
        • Emanuelsson C.
        • Geyer M.
        Endogenous kynurenic acid disrupts prepulse inhibition.
        Biol Psychiatry. 2004; 56: 255-260
        • Kaminski R.M.
        • Zielinska E.
        • Dekundy A.
        • van Luijtelaar G.
        • Turski W.
        Deficit of endogenous kynurenic acid in the frontal cortex of rats with a genetic form of absence epilepsy.
        Pol J Pharmacol. 2003; 55: 741-746
        • Stone T.W.
        Kynurenines in the CNS: from endogenous obscurity to therapeutic importance.
        Prog Neurobiol. 2001; 64: 185-218
        • Stone T.W.
        • Mackay G.M.
        • Forrest C.M.
        • Clark C.J.
        • Darlington L.G.
        Tryptophan metabolites and brain disorders.
        Clin Chem Lab Med. 2003; 41: 852-859
        • Moroni F.
        Tryptophan metabolism and brain function: focus on kynurenine and other indole metabolites.
        Eur J Pharmacol. 1999; 375: 87-100
        • Schwarcz R.
        • Pellicciari R.
        Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities.
        J Pharmacol Exp Ther. 2002; 303: 1-10
        • Klivenyi P.
        • Toldi J.
        • Vecsei L.
        Kynurenines in neurodegenerative disorders: therapeutic consideration.
        Adv Exp Med Biol. 2004; 541: 169-183
        • Schwarcz R.
        • Kohler C.
        Differential vulnerability of central neurons of the rat to quinolinic acid.
        Neurosci Lett. 1983; 38: 85-90
        • Schwarcz R.
        • Foster A.C.
        • French E.D.
        • Whetsell Jr., W.O.
        • Kohler C.
        Excitotoxic models for neurodegenerative disorders.
        Life Sci. 1984; 35: 19-32
        • Stone T.W.
        • Perkins M.N.
        Quinolinic acid: a potent endogenous excitant at amino acid receptors in CNS.
        Eur J Pharmacol. 1981; 72: 411-412
        • Guidetti P.
        • Schwarcz R.
        3-Hydroxykynurenine potentiates quinolinate but not NMDA toxicity in the rat striatum.
        Eur J Neurosci. 1999; 11: 3857-3863
        • Okuda S.
        • Nishiyama N.
        • Saito H.
        • Katsuki H.
        3-Hydroxykynurenine, an endogenous oxidative stress generator, causes neuronal cell death with apoptotic features and region selectivity.
        J Neurochem. 1998; 70: 299-307
        • Pearson S.J.
        • Reynolds G.P.
        Determination of 3-hydroxykynurenine in human brain and plasma by high-performance liquid chromatography with electrochemical detection. Increased concentrations in hepatic encephalopathy.
        J Chromatogr. 1991; 565: 436-440
        • Pearson S.J.
        • Reynolds G.P.
        Increased brain concentrations of a neurotoxin, 3-hydroxykynurenine, in Huntington's disease.
        Neurosci Lett. 1992; 144: 199-201
        • Hartai Z.
        • Klivenyi P.
        • Janaky T.
        • Penke B.
        • Dux L.
        • Vecsei L.
        Kynurenine metabolism in plasma and in red blood cells in Parkinson's disease.
        J Neurol Sci. 2005; 239: 31-35
        • Ogawa T.
        • Matson W.R.
        • Beal M.F.
        • Myers R.H.
        • Bird E.D.
        • Milbury P.
        • et al.
        Kynurenine pathway abnormalities in Parkinson's disease.
        Neurology. 1992; 42: 1702-1706
        • Sardar A.M.
        • Reynolds G.P.
        Frontal cortex indoleamine-2,3-dioxygenase activity is increased in HIV-1-associated dementia.
        Neurosci Lett. 1995; 187: 9-12
        • Morita T.
        • Saito K.
        • Takemura M.
        • Maekawa N.
        • Fujigaki S.
        • Fujii H.
        • et al.
        l-tryptophan-kynurenine pathway metabolite 3-hydroxyanthranilic acid induces apoptosis in macrophage-derived cells under pathophysiological conditions.
        Adv Exp Med Biol. 1999; 467: 559-563
        • Okuda S.
        • Nishiyama N.
        • Saito H.
        • Katsuki H.
        Hydrogen peroxide-mediated neuronal cell death induced by an endogenous neurotoxin, 3-hydroxykynurenine.
        Proc Natl Acad Sci U S A. 1996; 93: 12553-12558
        • Eastman C.L.
        • Guilarte T.R.
        • Lever J.R.
        Uptake of 3-hydroxykynurenine measured in rat brain slices and in a neuronal cell line.
        Brain Res. 1992; 584: 110-116
        • Guidetti P.
        • Okuno E.
        • Schwarcz R.
        Characterization of rat brain kynurenine aminotransferases I and II.
        J Neurosci Res. 1997; 50: 457-465
        • Dingledine R.
        • McBain C.J.
        • McNamara J.O.
        Excitatory amino acid receptors in epilepsy.
        Trends Pharmacol Sci. 1990; 11: 334-338
        • Choi D.W.
        • Koh J.Y.
        • Peters S.
        Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists.
        J Neurosci. 1988; 8: 185-196
        • Hodgkins P.S.
        • Schwarcz R.
        Metabolic control of kynurenic acid formation in the rat brain.
        Dev Neurosci. 1998; 20: 408-416
        • Swartz K.J.
        • During M.J.
        • Freese A.
        • Beal M.F.
        Cerebral synthesis and release of kynurenic acid: an endogenous antagonist of excitatory amino acid receptors.
        J Neurosci. 1990; 10: 2965-2973
        • Kessler M.
        • Terramani T.
        • Lynch G.
        • Baudry M.
        A glycine site associated with N-methyl-d-aspartic acid receptors: characterization and identification of a new class of antagonists.
        J Neurochem. 1989; 52: 1319-1328
        • Hilmas C.
        • Pereira E.F.
        • Alkondon M.
        • Rassoulpour A.
        • Schwarcz R.
        • Albuquerque E.X.
        The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications.
        J Neurosci. 2001; 21: 7463-7473
        • Chess A.C.
        • Bucci D.J.
        Increased concentration of cerebral kynurenic acid alters stimulus processing and conditioned responding.
        Behav Brain Res. 2006; 170: 326-332
        • Shepard P.D.
        • Joy B.
        • Clerkin L.
        • Schwarcz R.
        Micromolar brain levels of kynurenic acid are associated with a disruption of auditory sensory gating in the rat.
        Neuropsychopharmacology. 2003; 28: 1454-1462
        • Pereira E.F.
        • Hilmas C.
        • Santos M.D.
        • Alkondon M.
        • Maelicke A.
        • Albuquerque E.X.
        Unconventional ligands and modulators of nicotinic receptors.
        J Neurobiol. 2002; 53: 479-500
        • Carpenedo R.
        • Pittaluga A.
        • Cozzi A.
        • Attucci S.
        • Galli A.
        • Raiteri M.
        • et al.
        Presynaptic kynurenate-sensitive receptors inhibit glutamate release.
        Eur J Neurosci. 2001; 13: 2141-2147
        • Prescott C.
        • Weeks A.M.
        • Staley K.J.
        • Partin K.M.
        Kynurenic acid has a dual action on AMPA receptor responses.
        Neurosci Lett. 2006; 402: 108-112
      2. Rozsa, E., Robotka, H., Vecsei, L., and Toldi, J. The Janus-faced kynurenic acid. J Neural Transm. 2008 in press.

        • Widner B.
        • Leblhuber F.
        • Walli J.
        • Tilz G.P.
        • Demel U.
        • Fuchs D.
        Tryptophan degradation and immune activation in Alzheimer's disease.
        J Neural Transm. 2000; 107: 343-353
        • Baran H.
        • Jellinger K.
        • Deecke L.
        Kynurenine metabolism in Alzheimer's disease.
        J Neural Transm. 1999; 106: 165-181
        • Heyes M.P.
        • Saito K.
        • Crowley J.S.
        • Davis L.E.
        • Demitrack M.A.
        • Der M.
        • et al.
        Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease.
        Brain. 1992; 115: 1249-1273
        • Hartai Z.
        • Juhasz A.
        • Rimanoczy A.
        • Janaky T.
        • Donko T.
        • Dux L.
        • et al.
        Decreased serum and red blood cell kynurenic acid levels in Alzheimer's disease.
        Neurochem Int. 2007; 50: 308-313
        • Guillemin G.J.
        • Brew B.J.
        Implications of the kynurenine pathway and quinolinic acid in Alzheimer's disease.
        Redox Rep. 2002; 7: 199-206
        • Sofic E.
        • Halket J.
        • Przyborowska A.
        • Riederer P.
        • Beckmann H.
        • Sandler M.
        • et al.
        Brain quinolinic acid in Alzheimer's dementia.
        Eur Arch Psychiatry Neurol Sci. 1989; 239: 177-179
        • Vina J.
        • Lloret A.
        • Orti R.
        • Alonso D.
        Molecular bases of the treatment of Alzheimer's disease with antioxidants: prevention of oxidative stress.
        Mol Aspects Med. 2004; 25: 117-123
        • Selley M.L.
        • Close D.R.
        • Stern S.E.
        The effect of increased concentrations of homocysteine on the concentration of (E)-4-hydroxy-2-nonenal in the plasma and cerebrospinal fluid of patients with Alzheimer's disease.
        Neurobiol Aging. 2002; 23: 383-388
        • Guillemin G.J.
        • Williams K.R.
        • Smith D.G.
        • Smythe G.A.
        • Croitoru-Lamoury J.
        • Brew B.J.
        Quinolinic acid in the pathogenesis of Alzheimer's disease.
        Adv Exp Med Biol. 2003; 527: 167-176
        • Guillemin G.J.
        • Brew B.J.
        • Noonan C.E.
        • Takikawa O.
        • Cullen K.M.
        Indoleamine 2,3 dioxygenase and quinolinic acid immunoreactivity in Alzheimer's disease hippocampus.
        Neuropathol Appl Neurobiol. 2005; 31: 395-404
        • Simon R.P.
        • Young R.S.
        • Stout S.
        • Cheng J.
        Inhibition of excitatory neurotransmission with kynurenate reduces brain edema in neonatal anoxia.
        Neurosci Lett. 1986; 71: 361-364
        • Nozaki K.
        • Beal M.F.
        Neuroprotective effects of L-kynurenine on hypoxia-ischemia and NMDA lesions in neonatal rats.
        J Cereb Blood Flow Metab. 1992; 12: 400-407
        • Germano I.M.
        • Pitts L.H.
        • Meldrum B.S.
        • Bartkowski H.M.
        • Simon R.P.
        Kynurenate inhibition of cell excitation decreases stroke size and deficits.
        Ann Neurol. 1987; 22: 730-734
        • Andine P.
        • Lehmann A.
        • Ellren K.
        • Wennberg E.
        • Kjellmer I.
        • Nielsen T.
        • et al.
        The excitatory amino acid antagonist kynurenic acid administered after hypoxic-ischemia in neonatal rats offers neuroprotection.
        Neurosci Lett. 1988; 90: 208-212
        • Roussel S.
        • Pinard E.
        • Seylaz J.
        Kynurenate does not reduce infarct size after middle cerebral artery occlusion in spontaneously hypertensive rats.
        Brain Res. 1990; 518: 353-355
        • Ghribi O.
        • Callebert J.
        • Plotkine M.
        • Boulu R.G.
        Effect of kynurenic acid on the ischaemia-induced accumulation of glutamate in rat striatum.
        Neuroreport. 1994; 5: 435-437
        • Katayama Y.
        • Kawamata T.
        • Maeda T.
        • Ishikawa K.
        • Tsubokawa T.
        Inhibition of the early phase of free fatty acid liberation during cerebral ischemia by excitatory amino acid antagonist administered by microdialysis.
        Brain Res. 1994; 635: 331-334
        • Salvati P.
        • Ukmar G.
        • Dho L.
        • Rosa B.
        • Cini M.
        • Marconi M.
        • et al.
        Brain concentrations of kynurenic acid after a systemic neuroprotective dose in the gerbil model of global ischemia.
        Prog Neuropsychopharmacol Biol Psychiatry. 1999; 23: 741-752
        • Cozzi A.
        • Carpenedo R.
        • Moroni F.
        Kynurenine hydroxylase inhibitors reduce ischemic brain damage: studies with (m-nitrobenzoyl)-alanine (mNBA) and 3,4-dimethoxy-[-N-4-(nitrophenyl)thiazol-2yl]-benzenesulfonamide (Ro 61-8048) in models of focal or global brain ischemia.
        J Cereb Blood Flow Metab. 1999; 19: 771-777
        • Carpenedo R.
        • Meli E.
        • Peruginelli F.
        • Pellegrini-Giampietro D.E.
        • Moroni F.
        Kynurenine 3-mono-oxygenase inhibitors attenuate post-ischemic neuronal death in organotypic hippocampal slice cultures.
        J Neurochem. 2002; 82: 1465-1471
        • Lees G.J.
        The possible contribution of microglia and macrophages to delayed neuronal death after ischemia.
        J Neurol Sci. 1993; 114: 119-122
        • Baratte S.
        • Molinari A.
        • Veneroni O.
        • Speciale C.
        • Benatti L.
        • Salvati P.
        Temporal and spatial changes of quinolinic acid immunoreactivity in the gerbil hippocampus following transient cerebral ischemia.
        Brain Res Mol Brain Res. 1998; 59: 50-57
        • Stone T.W.
        • Behan W.M.
        Interleukin-1beta but not tumor necrosis factor-alpha potentiates neuronal damage by quinolinic acid: protection by an adenosine A2A receptor antagonist.
        J Neurosci Res. 2007; 85: 1077-1085
        • Tohgi H.
        • Abe T.
        • Takahashi S.
        • Saheki M.
        • Kimura M.
        Indoleamine concentrations in cerebrospinal fluid from patients with Alzheimer type and Binswanger type dementias before and after administration of citalopram, a synthetic serotonin uptake inhibitor.
        J Neural Transm Park Dis Dement Sect. 1995; 9: 121-131
        • Ito S.
        • Komatsu K.
        • Tsukamoto K.
        • Sved A.F.
        Excitatory amino acids in the rostral ventrolateral medulla support blood pressure in spontaneously hypertensive rats.
        Hypertension. 2000; 35: 413-417
        • Mizutani K.
        • Sugimoto K.
        • Okuda T.
        • Katsuya T.
        • Miyata T.
        • Tanabe T.
        • et al.
        Kynureninase is a novel candidate gene for hypertension in spontaneously hypertensive rats.
        Hypertens Res. 2002; 25: 135-140
        • Chiarugi A.
        • Cozzi A.
        • Ballerini C.
        • Massacesi L.
        • Moroni F.
        Kynurenine 3-mono-oxygenase activity and neurotoxic kynurenine metabolites increase in the spinal cord of rats with experimental allergic encephalomyelitis.
        Neuroscience. 2001; 102: 687-695
        • Cammer W.
        Oligodendrocyte killing by quinolinic acid in vitro.
        Brain Res. 2001; 896: 157-160
        • Rejdak K.
        • Bartosik-Psujek H.
        • Dobosz B.
        • Kocki T.
        • Grieb P.
        • Giovannoni G.
        • et al.
        Decreased level of kynurenic acid in cerebrospinal fluid of relapsing-onset multiple sclerosis patients.
        Neurosci Lett. 2002; 331: 63-65
        • Rejdak K.
        • Petzold A.
        • Kocki T.
        • Kurzepa J.
        • Grieb P.
        • Turski W.A.
        • et al.
        Astrocytic activation in relation to inflammatory markers during clinical exacerbation of relapsing–remitting multiple sclerosis.
        J Neural Transm. 2007; 114: 1011-1015
        • Hartai Z.
        • Klivenyi P.
        • Janaky T.
        • Penke B.
        • Dux L.
        • Vecsei L.
        Kynurenine metabolism in multiple sclerosis.
        Acta Neurol Scand. 2005; 112: 93-96
        • Amirkhani A.
        • Rajda C.
        • Arvidsson B.
        • Bencsik K.
        • Boda K.
        • Seres E.
        • et al.
        Interferon-beta affects the tryptophan metabolism in multiple sclerosis patients.
        Eur J Neurol. 2005; 12: 625-631
        • Guillemin G.J.
        • Kerr S.J.
        • Pemberton L.A.
        • Smith D.G.
        • Smythe G.A.
        • Armati P.J.
        • et al.
        IFN-beta1b induces kynurenine pathway metabolism in human macrophages: potential implications for multiple sclerosis treatment.
        J Interferon Cytokine Res. 2001; 21: 1097-1101
        • Hajos M.
        • Engberg G.
        Kynurenic acid blocks chemogenic nociception.
        J Pharm Pharmacol. 1990; 42: 373-374
        • Nasstrom J.
        • Karlsson U.
        • Post C.
        Antinociceptive actions of different classes of excitatory amino acid receptor antagonists in mice.
        Eur J Pharmacol. 1992; 212: 21-29
        • Dickenson A.H.
        • Dray A.
        Selective antagonism of capsaicin by capsazepine: evidence for a spinal receptor site in capsaicin-induced antinociception.
        Br J Pharmacol. 1991; 104: 1045-1049
        • Song X.J.
        • Zhao Z.Q.
        Differential effects of NMDA and non-NMDA receptor antagonists on spinal cutaneous vs muscular nociception in the cat.
        Neuroreport. 1993; 4: 17-20
        • Murphy A.Z.
        • Behbehani M.M.
        Electrophysiological characterization of the projection from the nucleus raphe magnus to the lateral reticular nucleus: possible role of an excitatory amino acid in synaptic activation.
        Brain Res. 1993; 606: 68-78
        • Simone D.A.
        • Nolano M.
        • Johnson T.
        • Wendelschafer-Crabb G.
        • Kennedy W.R.
        Intradermal injection of capsaicin in humans produces degeneration and subsequent reinnervation of epidermal nerve fibers: correlation with sensory function.
        J Neurosci. 1998; 18: 8947-8959
        • Goadsby P.J.
        • Edvinsson L.
        The trigeminovascular system and migraine: studies characterizing cerebrovascular and neuropeptide changes seen in humans and cats.
        Ann Neurol. 1993; 33: 48-56
        • Weiller C.
        • May A.
        • Limmroth V.
        • Juptner M.
        • Kaube H.
        • Schayck R.V.
        • et al.
        Brain stem activation in spontaneous human migraine attacks.
        Nat Med. 1995; 1: 658-660
        • Moskowitz M.A.
        Genes, proteases, cortical spreading depression and migraine: impact on pathophysiology and treatment.
        Funct Neurol. 2007; 22: 133-136
        • Knyihar-Csillik E.
        • Chadaide Z.
        • Okuno E.
        • Krisztin-Peva B.
        • Toldi J.
        • Varga C.
        • et al.
        Kynurenine aminotransferase in the supratentorial dura mater of the rat: effect of stimulation of the trigeminal ganglion.
        Exp Neurol. 2004; 186: 242-247
        • Knyihar-Csillik E.
        • Toldi J.
        • Mihaly A.
        • Krisztin-Peva B.
        • Chadaide Z.
        • Nemeth H.
        • et al.
        Kynurenine in combination with probenecid mitigates the stimulation-induced increase of c-fos immunoreactivity of the rat caudal trigeminal nucleus in an experimental migraine model.
        J Neural Transm. 2007; 114: 417-421
        • Ennis M.
        • Aston-Jones G.
        • Shiekhattar R.
        Activation of locus coeruleus neurons by nucleus paragigantocellularis or noxious sensory stimulation is mediated by intracoerulear excitatory amino acid neurotransmission.
        Brain Res. 1992; 598: 185-195
        • Jiang M.
        • Behbehani M.M.
        Physiological characteristics of the projection pathway from the medial preoptic to the nucleus raphe magnus of the rat and its modulation by the periaqueductal gray.
        Pain. 2001; 94: 139-147
        • Kiss C.
        • Shepard P.D.
        • Bari F.
        • Schwarcz R.
        Cortical spreading depression augments kynurenate levels and reduces malonate toxicity in the rat cortex.
        Brain Res. 2004; 1002: 129-135
        • Marrannes R.
        • Willems R.
        • De Prins E.
        • Wauquier A.
        Evidence for a role of the N-methyl-d-aspartate (NMDA) receptor in cortical spreading depression in the rat.
        Brain Res. 1988; 457: 226-240
        • Taylor D.L.
        • Urenjak J.
        • Zilkha E.
        • Obrenovitch T.P.
        Effects of probenecid on the elicitation of spreading depression in the rat striatum.
        Brain Res. 1997; 764: 117-125
        • Vikelis M.
        • Mitsikostas D.D.
        The role of glutamate and its receptors in migraine.
        CNS Neurol Disord Drug Targets. 2007; 6: 251-257
        • Vezzani A.
        • Serafini R.
        • Stasi M.A.
        • Caccia S.
        • Conti I.
        • Tridico R.V.
        • et al.
        Kinetics of MK-801 and its effect on quinolinic acid-induced seizures and neurotoxicity in rats.
        J Pharmacol Exp Ther. 1989; 249: 278-283
        • Sagratella S.
        • Frank C.
        • de Carolis A.S.
        Inhibitory influence of excitatory amino acid antagonists on penicillin-induced epileptiform bursting in rat hippocampal slices.
        Pharmacol Biochem Behav. 1990; 35: 999-1001
        • Vecsei L.
        • Miller J.
        • MacGarvey U.
        • Beal M.F.
        Kynurenine and probenecid inhibit pentylenetetrazol- and NMDLA-induced seizures and increase kynurenic acid concentrations in the brain.
        Brain Res Bull. 1992; 28: 233-238
        • Peeters B.W.
        • Ramakers G.M.
        • Vossen J.M.
        • Coenen A.M.
        The WAG/Rij rat model for nonconvulsive absence epilepsy: involvement of nonNMDA receptors.
        Brain Res Bull. 1994; 33: 709-713
        • Kocki T.
        • Wielosz M.
        • Turski W.A.
        • Urbanska E.M.
        Enhancement of brain kynurenic acid production by anticonvulsants—novel mechanism of antiepileptic activity?.
        Eur J Pharmacol. 2006; 541: 147-151
        • Young S.N.
        • Joseph M.H.
        • Gauthier S.
        Studies on kynurenine in human cerebrospinal fluid: lowered levels in epilepsy.
        J Neural Transm. 1983; 58: 193-204
        • Yamamoto H.
        • Shindo I.
        • Egawa B.
        • Horiguchi K.
        Kynurenic acid is decreased in cerebrospinal fluid of patients with infantile spasms.
        Pediatr Neurol. 1994; 10: 9-12
        • Yamamoto H.
        • Murakami H.
        • Horiguchi K.
        • Egawa B.
        Studies on cerebrospinal fluid kynurenic acid concentrations in epileptic children.
        Brain Dev. 1995; 17: 327-329
        • Heyes M.P.
        • Saito K.
        • Devinsky O.
        • Nadi N.S.
        Kynurenine pathway metabolites in cerebrospinal fluid and serum in complex partial seizures.
        Epilepsia. 1994; 35: 251-257
        • Natsume J.
        • Kumakura Y.
        • Bernasconi N.
        • Soucy J.P.
        • Nakai A.
        • Rosa P.
        • et al.
        Alpha-[11C] methyl-l-tryptophan and glucose metabolism in patients with temporal lobe epilepsy.
        Neurology. 2003; 60: 756-761
        • Fedi M.
        • Reutens D.C.
        • Andermann F.
        • Okazawa H.
        • Boling W.
        • White C.
        • et al.
        alpha-[11C]-Methyl-l-tryptophan PET identifies the epileptogenic tuber and correlates with interictal spike frequency.
        Epilepsy Res. 2003; 52: 203-213
        • Schwarcz R.
        • Whetsell Jr., W.O.
        • Mangano R.M.
        Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain.
        Science. 1983; 219: 316-318
        • Reynolds G.P.
        • Pearson S.J.
        • Halket J.
        • Sandler M.
        Brain quinolinic acid in Huntington's disease.
        J Neurochem. 1988; 50: 1959-1960
        • Schwarcz R.
        • Tamminga C.A.
        • Kurlan R.
        • Shoulson I.
        Cerebrospinal fluid levels of quinolinic acid in Huntington's disease and schizophrenia.
        Ann Neurol. 1988; 24: 580-582
        • Guidetti P.
        • Schwarcz R.
        3-Hydroxykynurenine and quinolinate: pathogenic synergism in early grade Huntington's disease?.
        Adv Exp Med Biol. 2003; 527: 137-145
        • Guidetti P.
        • Bates G.P.
        • Graham R.K.
        • Hayden M.R.
        • Leavitt B.R.
        • MacDonald M.E.
        • et al.
        Elevated brain 3-hydroxykynurenine and quinolinate levels in Huntington disease mice.
        Neurobiol Dis. 2006; 23: 190-197
        • Stoy N.
        • Mackay G.M.
        • Forrest C.M.
        • Christofides J.
        • Egerton M.
        • Stone T.W.
        • et al.
        Tryptophan metabolism and oxidative stress in patients with Huntington's disease.
        J Neurochem. 2005; 93: 611-623
        • Sapko M.T.
        • Guidetti P.
        • Yu P.
        • Tagle D.A.
        • Pellicciari R.
        • Schwarcz R.
        Endogenous kynurenate controls the vulnerability of striatal neurons to quinolinate: implications for Huntington's disease.
        Exp Neurol. 2006; 197: 31-40
        • Widner B.
        • Leblhuber F.
        • Fuchs D.
        Increased neopterin production and tryptophan degradation in advanced Parkinson's disease.
        J Neural Transm. 2002; 109: 181-189