Advertisement
Research Article| Volume 279, ISSUE 1-2, P30-38, April 15, 2009

Download started.

Ok

Bone marrow stromal cell therapy reduces proNGF and p75 expression in mice with experimental autoimmune encephalomyelitis

Published:February 04, 2009DOI:https://doi.org/10.1016/j.jns.2008.12.033

      Abstract

      Demyelination is prominent in experimental autoimmune encephalomyelitis (EAE). The receptor p75 and its high affinity ligand proNGF are required for oligodendrocyte death after injury. We hypothesize that bone marrow stromal cells (BMSCs) provide therapeutic benefit in EAE mice by reducing proNGF/p75 expression. PBS or BMSCs (2×10^6) were administered intravenously on the day of EAE onset. Neurological function and demyelination areas were measured. Immunohistochemical staining was used to measure apoptotic oligodendrocytes, expression of proNGF and p75, and the relationship between proNGF and p75 in neural cells. proNGF was used to treat oligodendrocytes in culture with or without BMSCs. EAE mice exhibited neurological function deficit and demyelination, and expression of proNGF and p75 was increased. BMSC treatment improved functional recovery, reduced demyelination area and apoptotic oligodendrocytes, decreased expression of proNGF and p75 compared with PBS treatment. proNGF+ cells colocalized with neural cell markers, while p75 colocalized with an oligodendrocytic marker, and proNGF colocalized with p75. proNGF induced apoptosis of oligodendrocytes in vitro, and p75 antibody blocked this apoptotic activity. BMSCs reduced p75 expression and apoptotic activity in oligodendrocytes with proNGF treatment. BMSC treatment benefits on EAE mice may be fostered by decreasing the cellular expression of proNGF and p75, thereby reducing oligodendrocyte death.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bjartmar C.
        • Wujek J.R.
        • Trapp B.D.
        Axonal loss in the pathology of ms: consequences for understanding the progressive phase of the disease.
        J Neurol Sci. 2003; 206: 165-171
        • Ferguson B.
        • Matyszak M.K.
        • Esiri M.M.
        • Perry V.H.
        Axonal damage in acute multiple sclerosis lesions.
        Brain. 1997; 120: 393-399
        • Lucchinetti C.
        • Bruck W.
        • Parisi J.
        • Scheithauer B.
        • Rodriguez M.
        • Lassmann H.
        Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination.
        Ann Neurol. 2000; 47: 707-717
        • Trotter J.L.
        • Clark H.B.
        • Collins K.G.
        • Wegeschiede C.L.
        • Scarpellini J.D.
        Myelin proteolipid protein induces demyelinating disease in mice.
        J Neurol Sci. 1987; 79: 173-188
        • Brown A.M.
        • McFarlin D.E.
        Relapsing experimental allergic encephalomyelitis in the sjl/j mouse.
        Lab Invest. 1981; 45: 278-284
        • Ben-Chetrit E.
        • Brocke S.
        Experimental Models of Multiple Sclerosis.
        Springer, US2005
        • Lev N.
        • Barhum Y.
        • Melamed E.
        • Offen D.
        Bax-ablation attenuates experimental autoimmune encephalomyelitis in mice.
        Neurosci Lett. 2004; 359: 139-142
        • Cudrici C.
        • Niculescu T.
        • Niculescu F.
        • Shin M.L.
        • Rus H.
        Oligodendrocyte cell death in pathogenesis of multiple sclerosis: protection of oligodendrocytes from apoptosis by complement.
        J Rehabil Res Dev. 2006; 43: 123-132
        • Akassoglou K.
        • Bauer J.
        • Kassiotis G.
        • Pasparakis M.
        • Lassmann H.
        • Kollias G.
        • et al.
        Oligodendrocyte apoptosis and primary demyelination induced by local tnf/p55tnf receptor signaling in the central nervous system of transgenic mice: models for multiple sclerosis with primary oligodendrogliopathy.
        Am J Pathol. 1998; 153: 801-813
        • Ercolini A.M.
        • Miller S.D.
        Mechanisms of immunopathology in murine models of central nervous system demyelinating disease.
        J Immunol. 2006; 176: 3293-3298
        • Okuda Y.
        • Sakoda S.
        [The role of apoptosis in autoimmune encephalomyelitis].
        Nippon Rinsho. 2003; 61: 1323-1328
        • Pender M.P.
        • Nguyen K.B.
        • McCombe P.A.
        • Kerr J.F.
        Apoptosis in the nervous system in experimental allergic encephalomyelitis.
        J Neurol Sci. 1991; 104: 81-87
        • Carroll W.M.
        • Jennings A.R.
        • Ironside L.J.
        Identification of the adult resting progenitor cell by autoradiographic tracking of oligodendrocyte precursors in experimental CNS demyelination.
        Brain. 1998; 121: 293-302
        • Keirstead H.S.
        • Blakemore W.F.
        The role of oligodendrocytes and oligodendrocyte progenitors in CNS remyelination.
        Adv Exp Med Biol. 1999; 468: 183-197
        • Scolding N.J.
        • Franklin R.J.
        Remyelination in demyelinating disease.
        Baillieres Clin Neurol. 1997; 6: 525-548
        • Blakemore W.F.
        • Keirstead H.S.
        The origin of remyelinating cells in the central nervous system.
        J Neuroimmunol. 1999; 98: 69-76
        • Hisahara S.
        • Araki T.
        • Sugiyama F.
        • Yagami K.
        • Suzuki M.
        • Abe K.
        • et al.
        Targeted expression of baculovirus p35 caspase inhibitor in oligodendrocytes protects mice against autoimmune-mediated demyelination.
        Embo J. 2000; 19: 341-348
        • Casaccia-Bonnefil P.
        • Carter B.D.
        • Dobrowsky R.T.
        • Chao M.V.
        Death of oligodendrocytes mediated by the interaction of nerve growth factor with its receptor p75.
        Nature. 1996; 383: 716-719
        • Dowling P.
        • Ming X.
        • Raval S.
        • Husar W.
        • Casaccia-Bonnefil P.
        • Chao M.
        • et al.
        Up-regulated p75ntr neurotrophin receptor on glial cells in ms plaques.
        Neurology. 1999; 53: 1676-1682
        • Ladiwala U.
        • Lachance C.
        • Simoneau S.J.
        • Bhakar A.
        • Barker P.A.
        • Antel J.P.
        P75 neurotrophin receptor expression on adult human oligodendrocytes: signaling without cell death in response to NGF.
        J Neurosci. 1998; 18: 1297-1304
        • Hempstead B.L.
        • Salzer J.L.
        Neurobiology. A glial spin on neurotrophins.
        Science. 2002; 298: 1184-1186
        • Lee R.
        • Kermani P.
        • Teng K.K.
        • Hempstead B.L.
        Regulation of cell survival by secreted proneurotrophins.
        Science. 2001; 294: 1945-1948
        • Nykjaer A.
        • Lee R.
        • Teng K.K.
        • Jansen P.
        • Madsen P.
        • Nielsen M.S.
        • et al.
        Sortilin is essential for proNGF-induced neuronal cell death.
        Nature. 2004; 427: 843-848
        • Heymach Jr., J.V.
        • Shooter E.M.
        The biosynthesis of neurotrophin heterodimers by transfected mammalian cells.
        J Biol Chem. 1995; 270: 12297-12304
        • Chao M.V.
        • Bothwell M.
        Neurotrophins: to cleave or not to cleave.
        Neuron. 2002; 33: 9-12
        • Fahnestock M.
        • Yu G.
        • Michalski B.
        • Mathew S.
        • Colquhoun A.
        • Ross G.M.
        • et al.
        The nerve growth factor precursor proNGF exhibits neurotrophic activity but is less active than mature nerve growth factor.
        J Neurochem. 2004; 89: 581-592
        • Srinivasan B.
        • Roque C.H.
        • Hempstead B.L.
        • Al-Ubaidi M.R.
        • Roque R.S.
        Microglia-derived pronerve growth factor promotes photoreceptor cell death via p75 neurotrophin receptor.
        J Biol Chem. 2004; 279: 41839-41845
        • Bruno M.A.
        • Cuello A.C.
        Activity-dependent release of precursor nerve growth factor, conversion to mature nerve growth factor, and its degradation by a protease cascade.
        Proc Natl Acad Sci U S A. 2006; 103: 6735-6740
        • Beattie M.S.
        • Harrington A.W.
        • Lee R.
        • Kim J.Y.
        • Boyce S.L.
        • Longo F.M.
        • et al.
        Prongf induces p75-mediated death of oligodendrocytes following spinal cord injury.
        Neuron. 2002; 36: 375-386
        • Coulson E.J.
        • Reid K.
        • Murray S.S.
        • Cheema S.S.
        • Bartlett P.F.
        Role of neurotrophin receptor p75ntr in mediating neuronal cell death following injury.
        Clin Exp Pharmacol Physiol. 2000; 27: 537-541
        • Harrington A.W.
        • Leiner B.
        • Blechschmitt C.
        • Arevalo J.C.
        • Lee R.
        • Morl K.
        • et al.
        Secreted proNGF is a pathophysiological death-inducing ligand after adult CNS injury.
        Proc Natl Acad Sci U S A. 2004; 101: 6226-6230
        • Pittenger M.F.
        • Mackay A.M.
        • Beck S.C.
        • Jaiswal R.K.
        • Douglas R.
        • Mosca J.D.
        • et al.
        Multilineage potential of adult human mesenchymal stem cells.
        Science. 1999; 284: 143-147
        • Kopen G.C.
        • Prockop D.J.
        • Phinney D.G.
        Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains.
        Proc Natl Acad Sci U S A. 1999; 96: 10711-10716
        • Deans R.J.
        • Moseley A.B.
        Mesenchymal stem cells: biology and potential clinical uses.
        Exp Hematol. 2000; 28: 875-884
        • Maitra B.
        • Szekely E.
        • Gjini K.
        • Laughlin M.J.
        • Dennis J.
        • Haynesworth S.E.
        • et al.
        Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress t-cell activation.
        Bone Marrow Transplant. 2004; 33: 597-604
        • Li Y.
        • Chen J.
        • Chen X.G.
        • Wang L.
        • Gautam S.C.
        • Xu Y.X.
        • et al.
        Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery.
        Neurology. 2002; 59: 514-523
        • Azizi S.A.
        • Stokes D.
        • Augelli B.J.
        • DiGirolamo C.
        • Prockop D.J.
        Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats–similarities to astrocyte grafts.
        Proc Natl Acad Sci U S A. 1998; 95: 3908-3913
        • Saito T.
        • Kuang J.Q.
        • Bittira B.
        • Al-Khaldi A.
        • Chiu R.C.
        Xenotransplant cardiac chimera: immune tolerance of adult stem cells.
        Ann Thorac Surg. 2002; 74 (discussion 24): 19-24
        • Zhang J.
        • Li Y.
        • Chen J.
        • Cui Y.
        • Lu M.
        • Elias S.B.
        • et al.
        Human bone marrow stromal cell treatment improves neurological functional recovery in EAE mice.
        Exp Neurol. 2005; 195: 16-26
        • Zhang J.
        • Li Y.
        • Lu M.
        • Cui Y.
        • Chen J.
        • Noffsinger L.
        • et al.
        Bone marrow stromal cells reduce axonal loss in experimental autoimmune encephalomyelitis mice.
        J Neurosci Res. 2006; 84: 587-595
        • Zappia E.
        • Casazza S.
        • Pedemonte E.
        • Benvenuto F.
        • Bonanni I.
        • Gerdoni E.
        • et al.
        Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing t-cell anergy.
        Blood. 2005; 106: 1755-1761
        • Youssef S.
        • Stuve O.
        • Patarroyo J.C.
        • Ruiz P.J.
        • Radosevich J.L.
        • Hur E.M.
        • et al.
        The HMG-CoA reductase inhibitor, atorvastatin, promotes a th2 bias and reverses paralysis in central nervous system autoimmune disease.
        Nature. 2002; 420: 78-84
        • Zhang J.
        • Li Y.
        • Cui Y.
        • Chen J.
        • Lu M.
        • Elias S.B.
        • et al.
        Erythropoietin treatment improves neurological functional recovery in EAE mice.
        Brain Res. 2005; 1034: 34-39
        • Franklin K.
        • Paxino G.
        The Mouse Brain in Stereotaxic Coordinates.
        Academic Press, San Diego1997
        • Verity A.N.
        • Bredesen D.
        • Vonderscher C.
        • Handley V.W.
        • Campagnoni A.T.
        Expression of myelin protein genes and other myelin components in an oligodendrocytic cell line conditionally immortalized with a temperature-sensitive retrovirus.
        J Neurochem. 1993; 60: 577-587
        • Paez P.M.
        • Garcia C.I.
        • Davio C.
        • Campagnoni A.T.
        • Soto E.F.
        • Pasquini J.M.
        Apotransferrin promotes the differentiation of two oligodendroglial cell lines.
        Glia. 2004; 46: 207-217
        • Li Y.
        • McIntosh K.
        • Chen J.
        • Zhang C.
        • Gao Q.
        • Borneman J.
        • et al.
        Allogeneic bone marrow stromal cells promote glial–axonal remodeling without immunologic sensitization after stroke in rats.
        Exp Neurol. 2006; 198: 313-325
        • Wang L.
        • Gang Zhang Z.
        • Lan Zhang R.
        • Chopp M.
        Activation of the pi3-k/akt pathway mediates cGMP enhanced-neurogenesis in the adult progenitor cells derived from the subventricular zone.
        J Cereb Blood Flow Metab. 2005; 25: 1150-1158
        • Livak K.J.
        • Schmittgen T.D.
        Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta c(t)) method.
        Methods. 2001; 25: 402-408
        • Zeger S.L.
        • Liang K.Y.
        Longitudinal data analysis for discrete and continuous outcomes.
        Biometrics. 1986; 42: 121-130
        • Conover W.J.
        Practical Nonparametric Statistics.
        John Wiley and Sons, New York1980
        • Bohning D.
        • Hempfling A.
        • Schelp F.P.
        • Schlattmann P.
        The area between curves (abc)–measure in nutritional anthropometry.
        Stat Med. 1992; 11: 1289-1304
        • Lu M.
        • Chase G.
        • Li S.
        Permutation tests and other statistics for ill-behaved data: experience of the NINDS t-PA stroke trial.
        Comm Stat. 2001; 30: 1481-1496
        • Ousman S.S.
        • Tomooka B.H.
        • van Noort J.M.
        • Wawrousek E.F.
        • O'Conner K.
        • Hafler D.A.
        • et al.
        Protective and therapeutic role for alphab-crystallin in autoimmune demyelination.
        Nature. 2007; 448: 474-479
        • Niculescu T.
        • Weerth S.
        • Niculescu F.
        • Cudrici C.
        • Rus V.
        • Raine C.S.
        • et al.
        Effects of complement c5 on apoptosis in experimental autoimmune encephalomyelitis.
        J Immunol. 2004; 172: 5702-5706
        • Rus H.
        • Cudrici C.
        • Niculescu F.
        C5b-9 complement complex in autoimmune demyelination and multiple sclerosis: dual role in neuroinflammation and neuroprotection.
        Ann Med. 2005; 37: 97-104
        • Wang X.
        • Bauer J.H.
        • Li Y.
        • Shao Z.
        • Zetoune F.S.
        • Cattaneo E.
        • et al.
        Characterization of a p75(NTR) apoptotic signaling pathway using a novel cellular model.
        J Biol Chem. 2001; 276: 33812-33820
        • Casha S.
        • Yu W.R.
        • Fehlings M.G.
        Oligodendroglial apoptosis occurs along degenerating axons and is associated with FAS and p75 expression following spinal cord injury in the rat.
        Neuroscience. 2001; 103: 203-218
        • Ambrosini E.
        • Columba-Cabezas S.
        • Serafini B.
        • Muscella A.
        • Aloisi F.
        Astrocytes are the major intracerebral source of macrophage inflammatory protein-3alpha/ccl20 in relapsing experimental autoimmune encephalomyelitis and in vitro.
        Glia. 2003; 41: 290-300
        • Heese K.
        • Hock C.
        • Otten U.
        Inflammatory signals induce neurotrophin expression in human microglial cells.
        J Neurochem. 1998; 70: 699-707
        • Gerdoni E.
        • Gallo B.
        • Casazza S.
        • Musio S.
        • Bonanni I.
        • Pedemonte E.
        • et al.
        Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis.
        Ann Neurol. 2007; 61: 219-227
        • Flugel A.
        • Matsumuro K.
        • Neumann H.
        • Klinkert W.E.
        • Birnbacher R.
        • Lassmann H.
        • et al.
        Anti-inflammatory activity of nerve growth factor in experimental autoimmune encephalomyelitis: inhibition of monocyte transendothelial migration.
        Eur J Immunol. 2001; 31: 11-22
        • Villoslada P.
        • Hauser S.L.
        • Bartke I.
        • Unger J.
        • Heald N.
        • Rosenberg D.
        • et al.
        Human nerve growth factor protects common marmosets against autoimmune encephalomyelitis by switching the balance of t helper cell type 1 and 2 cytokines within the central nervous system.
        J Exp Med. 2000; 191: 1799-1806
        • Blochl A.
        • Thoenen H.
        Localization of cellular storage compartments and sites of constitutive and activity-dependent release of nerve growth factor (NGF) in primary cultures of hippocampal neurons.
        Mol Cell Neurosci. 1996; 7: 173-190
        • Canossa M.
        • Griesbeck O.
        • Berninger B.
        • Campana G.
        • Kolbeck R.
        • Thoenen H.
        Neurotrophin release by neurotrophins: implications for activity-dependent neuronal plasticity.
        Proc Natl Acad Sci U S A. 1997; 94: 13279-13286
        • Edwards R.H.
        • Selby M.J.
        • Garcia P.D.
        • Rutter W.J.
        Processing of the native nerve growth factor precursor to form biologically active nerve growth factor.
        J Biol Chem. 1988; 263: 6810-6815
        • Fahnestock M.
        • Michalski B.
        • Xu B.
        • Coughlin M.D.
        The precursor pro-nerve growth factor is the predominant form of nerve growth factor in brain and is increased in Alzheimer's disease.
        Mol Cell Neurosci. 2001; 18: 210-220
        • Xie Y.
        • Tisi M.A.
        • Yeo T.T.
        • Longo F.M.
        Nerve growth factor (NGF) loop 4 dimeric mimetics activate ERK and AKT and promote NGF-like neurotrophic effects.
        J Biol Chem. 2000; 275: 29868-29874
        • Dolcet X.
        • Egea J.
        • Soler R.M.
        • Martin-Zanca D.
        • Comella J.X.
        Activation of phosphatidylinositol 3-kinase, but not extracellular-regulated kinases, is necessary to mediate brain-derived neurotrophic factor-induced motoneuron survival.
        J Neurochem. 1999; 73: 521-531
        • Wang H.J.
        • Cao J.P.
        • Yu J.K.
        • Gao D.S.
        Role of pi3-k/akt pathway and its effect on glial cell line-derived neurotrophic factor in midbrain dopamine cells.
        Acta Pharmacol Sin. 2007; 28: 166-172
        • Anitha M.
        • Gondha C.
        • Sutliff R.
        • Parsadanian A.
        • Mwangi S.
        • Sitaraman S.V.
        • et al.
        Gdnf rescues hyperglycemia-induced diabetic enteric neuropathy through activation of the pi3 k/akt pathway.
        J Clin Invest. 2006; 116: 344-356
        • Aloe L.
        • Micera A.
        A role of nerve growth factor in oligodendrocyte growth and differentiation of EAE affected rats.
        Arch Ital Biol. 1998; 136: 247-256