Advertisement
Research Article| Volume 279, ISSUE 1-2, P99-105, April 15, 2009

Spinal cord lesions and clinical status in multiple sclerosis: A 1.5 T and 3 T MRI study

Published:January 30, 2009DOI:https://doi.org/10.1016/j.jns.2008.11.009

      Abstract

      Objective

      Assess the relationship between spinal cord T2 hyperintense lesions and clinical status in multiple sclerosis (MS) with 1.5 and 3 T MRI.

      Methods

      Whole cord T2-weighted fast spin-echo MRI was performed in 32 MS patients [Expanded Disability Status Scale (EDSS) score (mean±SD: 2±1.9), range 0–6.5]. Protocols at 1.5 T and 3 T were optimized and matched on voxel size.

      Results

      Moderate correlations were found between whole cord lesion volume and EDSS score at 1.5 T (rs=.36, p=0.04), but not at 3 T (rs=0.13, p=0.46). Pyramidal Functional System Score (FSS) correlated with thoracic T2 lesion number (rs=.46, p=0.01) and total spinal cord lesion number (rs=0.37, p=0.04) and volume (rs=0.37, p=0.04) at 1.5 T. Bowel/bladder FSS correlated with T2 lesion volume and number in the cervical, thoracic, and total spine at 1.5 T (rs 0.40–0.57, all p<0.05). These MRI–FSS correlations were non-significant at 3 T. However, these correlation coefficients did not differ significantly between platforms (Choi's test p>0.05). Correlations between whole cord lesion volume and timed 25-foot walk were non-significant at 1.5 T and 3 T (p>0.05). Lesion number and volume did not differ between MRI platforms in the MS group (p>0.05).

      Conclusions

      Despite the use of higher field MRI strength, the link between spinal lesions and MS disability remains weak. The 1.5 T and 3 T protocols yielded similar results for many comparisons.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Barkhof F.
        MRI in multiple sclerosis: correlation with expanded disability status scale (EDSS).
        Mult Scler. 1999; 5: 283-286
        • Ikuta F.
        • Zimmerman H.M.
        Distribution of plaques in seventy autopsy cases of multiple sclerosis in the United States.
        Neurology. 1976; 26: 26-28
        • Kidd D.
        • Thorpe J.W.
        • Thompson A.J.
        • Kendall B.E.
        • Moseley I.F.
        • MacManus D.G.
        • et al.
        Spinal cord MRI using multi-array coils and fast spin echo. II. Findings in multiple sclerosis.
        Neurology. 1993; 43: 2632-2637
        • Nijeholt G.J.
        • van Walderveen M.A.
        • Castelijns J.A.
        • van Waesberghe J.H.
        • Polman C.
        • Scheltens P.
        • et al.
        Brain and spinal cord abnormalities in multiple sclerosis. Correlation between MRI parameters, clinical subtypes and symptoms.
        Brain. 1998; 121: 687-697
        • Trop I.
        • Bourgouin P.M.
        • Lapierre Y.
        • Duquette P.
        • Wolfson C.M.
        • Duong H.D.
        • Trudel G.C.
        Multiple sclerosis of the spinal cord: diagnosis and follow-up with contrast-enhanced MR and correlation with clinical activity.
        AJNR Am J Neuroradiol. 1998; 19: 1025-1033
        • U.S. Department of Health and Human Services
        Criteria for significant risk investigations of magnetic resonance diagnostic devices.
        2003 (Available at: http://www.fda.gov/cdrh/ode/guidance/793.pdf, Accessed May 16, 2008)
        • Neema M.
        • Stankiewicz J.
        • Arora A.
        • Guss Z.D.
        • Bakshi R.
        MRI in multiple sclerosis: what's inside the toolbox?.
        Neurotherapeutics. 2007; 4: 602-617
        • Sicotte N.L.
        • Voskuhl R.R.
        • Bouvier S.
        • Klutch R.
        • Cohen M.S.
        • Mazziotta J.C.
        Comparison of multiple sclerosis lesions at 1.5 and 3.0 Tesla.
        Invest Radiol. 2003; 38: 423-427
        • Keiper M.D.
        • Grossman R.I.
        • Hirsch J.A.
        • Bolinger L.
        • Ott I.L.
        • Mannon L.J.
        • et al.
        MR identification of white matter abnormalities in multiple sclerosis: a comparison between 1.5 T and 4 T.
        AJNR Am J Neuroradiol. 1998; 19: 1489-1493
        • Kangarlu A.
        • Bourekas E.C.
        • Ray-Chaudhury A.
        • Rammohan K.W.
        Cerebral cortical lesions in multiple sclerosis detected by MR imaging at 8 Tesla.
        AJNR Am J Neuroradiol. 2007; 28: 262-266
        • Wattjes M.P.
        • Harzheim M.
        • Kuhl C.K.
        • Gieseke J.
        • Schmidt S.
        • Klotz L.
        • et al.
        Does high-field MR imaging have an influence on the classification of patients with clinically isolated syndromes according to current diagnostic MR imaging criteria for multiple sclerosis?.
        AJNR Am J Neuroradiol. 2006; 27: 1794-1798
        • Wattjes M.P.
        • Lutterbey G.G.
        • Harzheim M.
        • Gieseke J.
        • Träber F.
        • Klotz L.
        • et al.
        Higher sensitivity in the detection of inflammatory brain lesions in patients with clinically isolated syndromes suggestive of multiple sclerosis using high field MRI: an intraindividual comparison of 1.5 T with 3.0 T.
        Eur Radiol. 2006; 16: 2067-2073
        • Bachmann R.
        • Reilmann R.
        • Schwindt W.
        • Kugel H.
        • Heindel W.
        • Krämer S.
        FLAIR imaging for multiple sclerosis: a comparative MR study at 1.5 and 3.0 Tesla.
        Eur Radiol. 2006; 16: 915-921
        • Nijeholt G.J.
        • Bergers E.
        • Kamphorst W.
        • Bot J.
        • Nicolay K.
        • Castelijns J.A..
        • et al.
        Post-mortem high-resolution MRI of the spinal cord in multiple sclerosis: a correlative study with conventional MRI, histopathology and clinical phenotype.
        Brain. 2001; 124: 154-166
        • Polman C.H.
        • Reingold S.C.
        • Edan G.
        • Filippi M.
        • Hartung H.P.
        • Kappos L.
        • et al.
        Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”.
        Ann Neurol. 2005; 58: 840-846
        • Lublin F.D.
        • Reingold S.C.
        Defining the clinical course of multiple sclerosis: results of an international survey. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis.
        Neurology. 1996; 46: 907-911
        • Kurtzke J.F.
        Rating neurologic impairment in multiple sclerosis: an Expanded Disability Status Scale (EDSS).
        Neurology. 1983; 33: 1444-1452
        • Fischer J.S.
        • Rudick R.A.
        • Cutter G.R.
        The Multiple Sclerosis Functional Composite Measure (MSFC): an integrated approach to MS clinical outcome assessment. National MS Society Clinical Outcomes Assessment Task Force.
        Mult Scler. 1999; 5: 244-250
        • Boss A.
        • Graf H.
        • Berger A.
        • Lauer U.A.
        • Wojtczyk H.
        • Claussen C.D.
        • Schick F.
        Tissue warming and regulatory responses induced by radio frequency energy deposition on a whole-body 3-Tesla magnetic resonance imager.
        J Magn Reson Imaging. 2007; 26: 1334-1339
        • Choi S.C.
        Tests of equality of dependent correlation coefficients.
        Biometrika. 1977; 64: 645-647
        • Hollander M.
        • Wolfe D.A.
        Nonparametric statistical methods.
        2nd ed. John Wiley & Sons, New York1999
        • Tartaglino L.M.
        • Friedman D.P.
        • Flanders A.E.
        • Lublin F.D.
        • Knobler R.L.
        • Liem M.
        Multiple sclerosis in the spinal cord: MR appearance and correlation with clinical parameters.
        Radiology. 1995; 195: 725-732
        • Filippi M.
        • Bozzali M.
        • Horsfield M.A.
        • Rocca M.A.
        • Sormani M.P.
        • Iannucci G.
        • et al.
        A conventional and magnetization transfer MRI study of the cervical cord in patients with MS.
        Neurology. 2000; 54: 207-213
        • Crémillieux Y.
        • Ding S.
        • Dunn J.F.
        High-resolution in vivo measurements of transverse relaxation times in rats at 7 Tesla.
        Magn Reson Med. 1998; 39: 285-290
        • Taber K.H.
        • Herrick R.C.
        • Weathers S.W.
        • Kumar A.J.
        • Schomer D.F.
        • Hayman L.A.
        Pitfalls and artifacts encountered in clinical MR imaging of the spine.
        Radiographics. 1998; 18: 1499-1521
        • Schick F.
        Whole-body MRI at high field: technical limits and clinical potential.
        Eur Radiol. 2005; 15: 946-959
        • Katscher U.
        • Börnert P.
        Parallel magnetic resonance imaging.
        Neurotherapeutics. 2007; 4: 499-510
        • Moore G.R.
        • Leung E.
        • MacKay A.L.
        • Vavasour I.M.
        • Whittall K.P.
        • Cover K.S.
        • et al.
        A pathology-MRI study of the short-T2 component in formalin-fixed multiple sclerosis brain.
        Neurology. 2000; 55: 1506-1510
        • Filippi M.
        • Rocca M.A.
        • Gasperini C.
        • Sormani M.P.
        • Bastianello S.
        • Horsfield M.A.
        • et al.
        Interscanner variation in brain MR lesion load measurements in multiple sclerosis using conventional spin-echo, rapid relaxation-enhanced, and fast-FLAIR sequences.
        AJNR Am J Neuroradiol. 1999; 20: 133-137
        • Hesseltine S.M.
        • Law M.
        • Babb J.
        • Rad M.
        • Lopez S.
        • Ge Y.
        • et al.
        Diffusion tensor imaging in multiple sclerosis: assessment of regional differences in the axial plane within normal-appearing cervical spinal cord.
        AJNR Am J Neuroradiol. 2006; 27: 1189-1193
        • Bjartmar C.
        • Kidd G.
        • Mörk S.
        • Rudick R.
        • Trapp B.D.
        Neurological disability correlates with spinal cord axonal loss and reduced N-acetyl aspartate in chronic multiple sclerosis patients.
        Ann Neurol. 2000; 48: 893-901
        • Bergers E.
        • Bot J.C.
        • De Groot C.J.
        • Polman C.H.
        • Lycklama à Nijeholt G.J.
        • Castelijns J.A.
        • et al.
        Axonal damage in the spinal cord of MS patients occurs largely independent of T2 MRI lesions.
        Neurology. 2002; 59: 1766-1771
        • Bot J.C.
        • Blezer E.L.
        • Kamphorst W.
        • Lycklama A Nijeholt G.J.
        • Ader H.J.
        • Castelijns J.A.
        • et al.
        The spinal cord in multiple sclerosis: relationship of high-spatial-resolution quantitative MR imaging findings to histopathologic results.
        Radiology. 2004; 233: 531-540
        • Mottershead J.P.
        • Schmierer K.
        • Clemence M.
        • Thornton J.S.
        • Scaravilli F.
        • Barker G.J.
        • et al.
        High field MRI correlates of myelin content and axonal density in multiple sclerosis — a post-mortem study of the spinal cord.
        J Neurol. 2003; 250: 1293-1301
        • Agosta F.
        • Filippi M.
        MRI of spinal cord in multiple sclerosis.
        J Neuroimaging. 2007; 17: 46S-49S