Advertisement
Research Article| Volume 276, ISSUE 1-2, P88-94, January 15, 2009

Download started.

Ok

Clinical and histopathological features of progressive-type familial amyloidotic polyneuropathy with TTR Lys54

      Abstract

      The purpose of this study was to evaluate the clinical and pathological features in patients with progressive-type familial amyloidotic polyneuropathy (FAP) using autopsy and biopsy specimens. A proband is a 33-year-old man with FAP type I who developed motor, sensory and autonomic impairments with neuropathy, heart failure, and anorexia. Genetic findings of transthyretin (TTR) revealed G to A transition in codon 54 causing a rare mutation of TTR Lys54. He died of pneumonia and severe cardiac failure 4 years after onset. Autopsy showed heavy amyloid deposition in the heart, peripheral nerves, thyroid, skin, fat tissue, prostate and testis, moderate in the sympathetic nerve trunk, vagal nerve, celiac plexus, pelvic plexus, bladder, gastrointestinal tract, tongue, pancreas, lung, pituitary, blood vessel, gall bladder, adrenals and muscles, and free in the central nervous system, liver, kidney and spleen. Sural nerve biopsy in a sibling confirmed TTR amyloidosis immunohistochemically. Electronmicroscopic findings of amyloid fibrils were similar to that of FAP Met30. Immunoelectronmicroscopic findings indicated the relationship between amyloid fibrils or non-fibrillar structure and collagen fibers. The distribution of amyloid deposition, heavy in the heart and lacking in the kidney, is a characteristic feature and reflected severity of FAP with TTR Lys54.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Liz M.A.
        • Faro C.J.
        • Saraiva M.J.
        • Sousa M.M.
        Transthyretin, a new cryptic protease.
        J Biol Chem. 2004; 279: 21431-21438
        • Sousa M.M.
        • Berglund L.
        • Saraiva M.J.
        Transthyretin in high density lipoproteins: association with apolipoprotein A-I.
        J Lipid Res. 2000; 41: 58-65
      1. http://www.bumc.bu.edu/Dept/Content.aspx?DepartmentID=354&PageID=8850.

        • Busse A.
        • Sánchez M.A.
        • Monterroso V.
        • Alvarado M.V.
        • León P.
        A severe form of amyloidotic polyneuropathy in a Costa Rican family with a rare transthyretin mutation (Glu54Lys).
        Am J Med Genet. 2004; 128: 190-194
        • Togashi S.
        • Watanabe H.
        • Nagasaka T.
        • Shindo K.
        • Shiozawa Z.
        • Maeda S.
        • et al.
        An aggressive familial amyloidotic polyneuropathy caused by a new variant transthyretin Lys54.
        Neurology. 1999; 53: 637-639
        • Imasawa M.
        • Toda Y.
        • Sakurada Y.
        • Imai M.
        • Iijima H.
        Vitreous opacities in a case of familial amyloidotic polyneuropathy associated with a transthyretin Lys 54.
        Acta Ophthalmol Scand. 2004; 82: 635-636
        • Nakazato M.
        • Shiomi K.
        • Miyazato M.
        • Matsukura S.
        Type I familial amyloidotic polyneuropathy in Japan.
        Intern Med. 1992; 31: 1335-1338
        • Araki S.
        • Yi S.
        Pathology of familial amyloidotic polyneuropathy with TTR Met 30 in kumamoto, Japan.
        Neuropathology. 2000; 20: S47-51
        • Sobue G.
        • Koike H.
        • Misu K.
        • Hattori N.
        • Yamamoto M.
        • Ikeda S.
        • et al.
        Clinicopathological and genetic features of early- and late-onset FAP type I (FAP ATTR Val30Met) in Japan.
        Amyloid. 2003; 10: 32-38
        • Ikeda S.
        • Nakazato M.
        • Ando Y.
        • Sobue G.
        Familial transthyretin-type amyloid polyneuropathy in Japan: clinical and genetic heterogeneity.
        Neurology. 2002; 58: 1001-1007
        • Nakata T.
        • Shimamoto K.
        • Yonekura S.
        • Kobayashi N.
        • Sugiyama T.
        • Imai K.
        • et al.
        Cardiac sympathetic denervation in transthyretin-related familial amyloidotic polyneuropathy: detection with Iodine-123-MIBG.
        J Nucl Med. 1995; 36: 1040-1042
        • Jacobson D.R.
        • McFarlin D.E.
        • Kane I.
        • Buxbaum J.N.
        Transthyretin Pro55, a variant associated with early-onset, aggressive, diffuse amyloidosis with cardiac and neurologic involvement.
        Hum Genet. 1992; 89: 353-356
        • McCutchen S.L.
        • Colon W.
        • Kelly L.W.
        Transthyretin mutation Leu55-Pro significantly alters tetramer stability and increases amyloidgenicity.
        Biochemistry. 1993; 32: 12119-12127
        • Sebastiao M.P.
        • Saraiva N.J.
        • Damas A.M.
        The crystal structure of amyloidgenic Leu55Pro transthyretin variant reveals a possible pathway for transthyretin polymerization into amyloid fibrils.
        J Biol Chem. 1998; 273: 24715-24722
        • Keetch C.A.
        • Bromely E.H.
        • McCammon M.G.
        • Wang N.
        • Christodoulou J.
        • Robinson C.V.
        L55P transthyretin accelerates subunit exchange and leads to rapid formation of hybrid tetramers.
        J Biol Chem. 2005; 280: 41667-41674
        • Sekijima Y.
        • Wiseman R.L.
        • Matteson J.
        • Hammarstro m P.
        • Miller S.R.
        • Sawkar A.R.
        • et al.
        The biological and chemical basis for tissue-selective amyloid disease.
        Cell. 2006; 121: 73-85
        • Kim H.S.
        • Kim S.M.
        • Kang S.W.
        • Jung S.C.
        • Lee K.S.
        • Kim T.S.
        • et al.
        An aggressive form of familial amyloidotic polyneuropathy caused by a Glu54Gly mutation in the transthyretin gene.
        Eur J Neurol. 2005; 12: 657-659
        • Jacobsson B.
        • Lignelid H.
        • Bergerheim U.S.R.
        Transthyretin and cystatin C are catabolized in proximal tubular epithelial cells and the proteins are not useful as markers for renal carcinomas.
        Histopahology. 1995; 26: 559-564
        • Tsuzuki K.
        • Fukatsu R.
        • Hayashi Y.
        • Yoshida T.
        • Sasaki N.
        • Takamaru Y.
        • et al.
        Amyloid β protein and transthyretin, sequestrating protein colocalize in normal human kidney.
        Neurosci Lett. 1996; 222: 163-166
        • Sakashita N.
        • Ando Y.
        • Obayashi K.
        • Terazaki H.
        • Yamashita T.
        • Takei M.
        • et al.
        Familial amyloidotic polyneuropathy(ATTR Ser50Ile): the first autopsy case report.
        Virchows Arch. 2000; 436: 345-350
        • Reilly M.M.
        • Adams D.
        • Booth D.R.
        • Davis M.B.
        • Said G.
        • Laubriat-Bianchin M.
        • et al.
        Transthyretin gene analysis in European patients with suspected familial amyloido polyneuropathy.
        Brain. 1995; 118: 849-856
        • Koike H.
        • Misu K.
        • Sugiura M.
        • Iijima M.
        • Mori K.
        • Yamamoto M.
        • et al.
        Pathology of early- vs late-onset TTR Met30 familial amyloid polyneuropathy.
        Neurology. 2004; 63: 129-138
        • Sakashita N.
        • Ando Y.
        • Jinnouchi K.
        • Yoshimatsu M.
        • Terazaki H.
        • Obayashi K.
        • et al.
        Familial amyloidotic polyneuropathy(ATTR Val30Met) with widespread cerebral amyloid angiopathy and lethal cerebral hemorrhage.
        Pathol Int. 2001; 51: 476-480
        • Ikeda S.
        • Yanagisawa N.
        • Hongo M.
        • Ito N.
        Vagus nerve and celial ganglion lesions in generalized amyloidosis.
        J Neurol Sci. 1987; 79: 129-139
        • Ando Y.
        • Yi S.
        • Nakagawa T.
        • Ikegawa S.
        • Hirota M.
        • Miyazaki A.
        • et al.
        Disturbed metabolism of glucose and related hormones in familial amyloidotic polyneuropathy : hypersensitivities of the autonomic nervous system and therapeutic prevention.
        J Auton Nerv Syst. 1991; 35: 63-70
        • Olofsson B.-O.
        • Grankvist K.
        • Olsson T.
        • Boman K.
        • Forsberg K.
        • Lafvas I.
        • et al.
        Assesment of hypothalamic-pituitary function in patients with familial amyloidotic polyneuropathy.
        J Intern Med. 1991; 229: 55-59
        • Olofsson B.-O.
        • Grankvist K.
        • Boman K.
        • Forsberg K.
        • Lafvas I.
        • Lithner F.
        Assesment of thyroid anad adrenal function in patients with familial amyloidotic polyneuropathy.
        J Intern Med. 1989; 225: 337-341
        • Said G.
        Familial amyloid polyneuropathy: mechanisms leading to nerve degeneration. Amyloid.
        J Protein Folding Disord. 2003; 10: 7-12
        • Kelly J.W.
        The alternative conformations of amyloidgenic proteins and their multi-step assembly pathways.
        Curr Opin Struck Biol. 1998; 8: 101-106
        • Teng M.
        • Yin J.
        • Vidal R.
        • Ghiso J.
        • Kumar A.
        • Rabenou R.
        • et al.
        Amyloid and nonfibrillar deposits in mice transgenic for wild-type human transthyretin: a possible model for senile systemic amyloidosis.
        Lab Invest. 2001; 81: 385-396
        • Sousa M.M.
        • Cardoso I.
        • Fernandes R.
        • Guimarães A.
        • Sariva M.J.
        Deposition of transthyretin in early stages of familial amyloidotic polyneuropathy: evidence for toxicity of non-fibrillar aggregates.
        Am J Pathol. 2001; 159: 1993-2000
        • Moe S.M.
        • Singh G.K.
        • Bailey A.M.
        Beta2-microglobulin induces MMP-1 but not TIMP-1 expression in human synovial fibroblasts.
        Kidney Int. 2000; 57: 2023-2034