Advertisement
Research Article| Volume 276, ISSUE 1-2, P60-65, January 15, 2009

Download started.

Ok

A cross-sectional study for glucose intolerance of myotonic dystrophy

      Abstract

      We made a cross-sectional study to analyze glucose intolerance of myotonic dystrophy type 1 (DM1) with several examination including oral glucose tolerance test (OGTT), insulin tolerance test (ITT) and adiponectin. Ninety-five DM1 patients participated in this study. Health examination data from general people were used as controls.
      In DM1, homeostasis model assessment-insulin resistance (HOMA-IR) was higher than control even in the lowest fasting blood sugar (FBS) stage (<80 mg/dl) and insulin sensitivity assessed by ITT was low regardless of their FBS. Insulinogenic index of DM1 was positively correlated to HOMA-IR. Insulinogenic index and sum of IRI in OGTT were markedly elevated in the lowest FBS stage and declined along with elevation of FBS. Consequently, as many as 13.3% of DM1 patients with 90–110 mg/dl of FBS exhibited DM pattern, while only 1.9% in control. Adiponectin was higher in DM1 than control. Although age correlated with adiponectin in both control and DM1, its impact was stronger in DM1.
      DM1 predisposes insulin resistance and compensatory hyperinsulinemia exist even in patients with low FBS. We should pay attention to glucose intolerance of DM1 patients earlier than that of the general population. It seemed that 90 mg/dl of FBS is an important index as an indication of careful managements.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Brook J.D.
        • McCurrach M.E.
        • Harley H.G.
        • Buckler A.J.
        • Church D.
        • Aburatani H.
        • et al.
        Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member.
        Cell. 1992; 68: 799-808
        • Harper P.
        Myotonic dystrophy.
        3rd ed. Saunders WB, London2001
        • Osborne R.J.
        • Thornton C.A.
        RNA-dominant diseases.
        Hum Mol Genet. 2006; 15 (Spec No 2): R162-169
        • Miller J.W.
        • Urbinati C.R.
        • Teng-Umnuay P.
        • Stenberg M.G.
        • Byrne B.J.
        • Thornton C.A.
        • et al.
        Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy.
        Embo J. 2000; 19: 4439-4448
        • Lin X.
        • Miller J.W.
        • Mankodi A.
        • Kanadia R.N.
        • Yuan Y.
        • Moxley R.T.
        • et al.
        Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy.
        Hum Mol Genet. 2006; 15: 2087-2097
        • Philips A.V.
        • Timchenko L.T.
        • Cooper T.A.
        Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy.
        Science. 1998; 280: 737-741
        • Mankodi A.
        • Takahashi M.P.
        • Jiang H.
        • Beck C.L.
        • Bowers W.J.
        • Moxley R.T.
        • et al.
        Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy.
        Mol Cell. 2002; 10: 35-44
        • Kimura T.
        • Takahashi M.P.
        • Okuda Y.
        • Kaido M.
        • Fujimura H.
        • Yanagihara T.
        • et al.
        The expression of ion channel mRNAs in skeletal muscles from patients with myotonic muscular dystrophy.
        Neurosci Lett. 2000; 295: 93-96
        • Moxley III, R.T.
        • Griggs R.C.
        • Goldblatt D.
        • VanGelder V.
        • Herr B.E.
        • Thiel R.
        Decreased insulin sensitivity of forearm muscle in myotonic dystrophy.
        J Clin Invest. 1978; 62: 857-867
        • Perseghin G.
        • Caumo A.
        • Arcelloni C.
        • Benedini S.
        • Lanzi R.
        • Pagliato E.
        • et al.
        Contribution of abnormal insulin secretion and insulin resistance to the pathogenesis of type 2 diabetes in myotonic dystrophy.
        Diabetes Care. 2003; 26: 2112-2118
        • Annane D.
        • Duboc D.
        • Mazoyer B.
        • Merlet P.
        • Fiorelli M.
        • Eymard B.
        • et al.
        Correlation between decreased myocardial glucose phosphorylation and the DNA mutation size in myotonic dystrophy.
        Circulation. 1994; 90: 2629-2634
        • Vlachopapadopoulou E.
        • Zachwieja J.J.
        • Gertner J.M.
        • Manzione D.
        • Bier D.M.
        • Matthews D.E.
        • et al.
        Metabolic and clinical response to recombinant human insulin-like growth factor I in myotonic dystrophy—a clinical research center study.
        J Clin Endocrinol Metab. 1995; 80: 3715-3723
        • Kono S.
        Insulin resistance in myotonic dystrophy.
        Nippon Rinsho. 2002; 60: 734-738
        • Savkur R.S.
        • Philips A.V.
        • Cooper T.A.
        Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy.
        Nat Genet. 2001; 29: 40-47
        • Guiraud-Dogan C.
        • Huguet A.
        • Gomes-Pereira M.
        • Brisson E.
        • Bassez G.
        • Junien C.
        • et al.
        DM1 CTG expansions affect insulin receptor isoforms expression in various tissues of transgenic mice.
        Biochim Biophys Acta. 2007; 1772: 1183-1191
        • Llagostera E.
        • Catalucci D.
        • Marti L.
        • Liesa M.
        • Camps M.
        • Ciaraldi T.P.
        • et al.
        Role of myotonic dystrophy protein kinase (DMPK) in glucose homeostasis and muscle insulin action.
        PLoS ONE. 2007; 2: e1134
        • Barreca T.
        • Muratorio A.
        • Sannia A.
        • Murri L.
        • Rossi B.
        • Rolandi E.
        Evaluation of twenty-four-hour secretory patterns of growth hormone and insulin in patients with myotonic dystrophy.
        J Clin Endocrinol Metab. 1980; 51: 1089-1092
        • Okimura Y.
        • Chihara K.
        • Kita T.
        • Kashio Y.
        • Sato M.
        • Kitajima N.
        • et al.
        Discordance between growth hormone (GH) responses after GH-releasing hormone and insulin hypoglycemia in myotonic dystrophy.
        J Clin Endocrinol Metab. 1988; 67: 1074-1079
        • Fernandez-Real J.M.
        • Molina A.
        • Broch M.
        • Ricart W.
        • Gutierrez C.
        • Casamitjana R.
        • et al.
        Tumor necrosis factor system activity is associated with insulin resistance and dyslipidemia in myotonic dystrophy.
        Diabetes. 1999; 48: 1108-1112
        • Johansson A.
        • Carlstrom K.
        • Ahren B.
        • Cederquist K.
        • Krylborg E.
        • Forsberg H.
        • et al.
        Abnormal cytokine and adrenocortical hormone regulation in myotonic dystrophy.
        J Clin Endocrinol Metab. 2000; 85: 3169-3176
        • Johansson A.
        • Ahren B.
        • Forsberg H.
        • Olsson T.
        Testosterone and diurnal rhythmicity of leptin, TNF-alpha and TNF-II receptor in insulin-resistant myotonic dystrophy patients.
        Int J Obes Relat Metab Disord. 2002; 26: 1386-1392
        • Johansson A.
        • Olsson T.
        • Cederquist K.
        • Forsberg H.
        • Holst J.J.
        • Seckl J.R.
        • et al.
        Abnormal release of incretins and cortisol after oral glucose in subjects with insulin-resistant myotonic dystrophy.
        Eur J Endocrinol. 2002; 146: 397-405
        • Yamanouchi K.
        • Shinozaki T.
        • Chikada K.
        • Nishikawa T.
        • Ito K.
        • Shimizu S.
        • et al.
        Daily walking combined with diet therapy is a useful means for obese NIDDM patients not only to reduce body weight but also to improve insulin sensitivity.
        Diabetes Care. 1995; 18: 775-778
        • Nakai N.
        • Shimomura Y.
        • Ohsaki N.
        • Sato J.
        • Oshida Y.
        • Ohsawa I.
        • et al.
        Exercise training prevents maturation-induced decrease in insulin sensitivity.
        J Appl Physiol. 1996; 80: 1963-1967
        • Zinman B.
        • Ruderman N.
        • Campaigne B.N.
        • Devlin J.T.
        • Schneider S.H.
        Physical activity/exercise and diabetes mellitus.
        Diabetes Care. 2003; 26 (Suppl 1): S73-77
        • Lue Y.J.
        • Su C.Y.
        • Yang R.C.
        • Su W.L.
        • Lu Y.M.
        • Lin R.F.
        • et al.
        Development and validation of a muscular dystrophy-specific functional rating scale.
        Clin Rehabil. 2006; 20: 804-817
        • Nagaretani H.
        • Nakamura T.
        • Funahashi T.
        • Kotani K.
        • Miyanaga M.
        • Tokunaga K.
        • et al.
        Visceral fat is a major contributor for multiple risk factor clustering in Japanese men with impaired glucose tolerance.
        Diabetes Care. 2001; 24: 2127-2133
      1. Mellitus TcoJDSftdcod. Report of the committee of Japan Diabetes Society on the classification and diagnostic criteria of diabetes mellitus.
        J Jpn Diab Soc. 1999; 42: 385-404
        • Matthews D.R.
        • Hosker J.P.
        • Rudenski A.S.
        • Naylor B.A.
        • Treacher D.F.
        • Turner R.C.
        Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man.
        Diabetologia. 1985; 28: 412-419
        • Bonora E.
        • Moghetti P.
        • Zancanaro C.
        • Cigolini M.
        • Querena M.
        • Cacciatori V.
        • et al.
        Estimates of in vivo insulin action in man: comparison of insulin tolerance tests with euglycemic and hyperglycemic glucose clamp studies.
        J Clin Endocrinol Metab. 1989; 68: 374-378
        • Yoshizumi T.
        • Nakamura T.
        • Takahashi M.
        • Funahashi T.
        • Yamashita S.
        • Matsuzawa Y.
        • et al.
        To diffuse assessment tool for evaluation of abdominal visceral fat with computed tomography —establishment of conditions for computed tomography and development of computer software—(Japanese, author translated).
        Himan Kenkyu. 2000; 6: 193-199
        • Bottner A.
        • Kratzsch J.
        • Muller G.
        • Kapellen T.M.
        • Bluher S.
        • Keller E.
        • et al.
        Gender differences of adiponectin levels develop during the progression of puberty and are related to serum androgen levels.
        J Clin Endocrinol Metab. 2004; 89: 4053-4061
        • Bonora E.
        • Targher G.
        • Alberiche M.
        • Bonadonna R.C.
        • Saggiani F.
        • Zenere M.B.
        • et al.
        Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: studies in subjects with various degrees of glucose tolerance and insulin sensitivity.
        Diabetes Care. 2000; 23: 57-63
        • Tanaka H.
        • Matsumura T.
        • Saito T.
        • Iyama A.
        • Miyashita N.
        • Fujikawa R.
        • et al.
        Arteriosclerosis in myotonid dystrophy——(Japanese, Author translated). The Research Grant for Nervous and Mental Disorders (14A-5) from Ministry of Health, Labour and Welfare, Tokyo2005
        • Maeda N.
        • Shimomura I.
        • Kishida K.
        • Nishizawa H.
        • Matsuda M.
        • Nagaretani H.
        • et al.
        Diet-induced insulin resistance in mice lacking adiponectin/ACRP30.
        Nat Med. 2002; 8: 731-737
        • Arita Y.
        • Kihara S.
        • Ouchi N.
        • Takahashi M.
        • Maeda K.
        • Miyagawa J.
        • et al.
        Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity.
        Biochem Biophys Res Commun. 1999; 257: 79-83
        • Adamczak M.
        • Wiecek A.
        • Funahashi T.
        • Chudek J.
        • Kokot F.
        • Matsuzawa Y.
        Decreased plasma adiponectin concentration in patients with essential hypertension.
        Am J Hypertens. 2003; 16: 72-75
        • Ouchi N.
        • Kihara S.
        • Arita Y.
        • Maeda K.
        • Kuriyama H.
        • Okamoto Y.
        • et al.
        Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin.
        Circulation. 1999; 100: 2473-2476
        • Zoccali C.
        • Mallamaci F.
        • Panuccio V.
        • Tripepi G.
        • Cutrupi S.
        • Parlongo S.
        • et al.
        Adiponectin is markedly increased in patients with nephrotic syndrome and is related to metabolic risk factors.
        Kidney Int Suppl. 2003; : S98-102
        • Nishizawa H.
        • Shimomura I.
        • Kishida K.
        • Maeda N.
        • Kuriyama H.
        • Nagaretani H.
        • et al.
        Androgens decrease plasma adiponectin, an insulin-sensitizing adipocyte-derived protein.
        Diabetes. 2002; 51: 2734-2741
        • Tamura T.
        • Furukawa Y.
        • Taniguchi R.
        • Sato Y.
        • Ono K.
        • Horiuchi H.
        • et al.
        Serum adiponectin level as an independent predictor of mortality in patients with congestive heart failure.
        Circ J. 2007; 71: 623-630
        • Yasui T.
        • Tomita J.
        • Miyatani Y.
        • Yamada M.
        • Uemura H.
        • Irahara M.
        • et al.
        Associations of adiponectin with sex hormone-binding globulin levels in aging male and female populations.
        Clin Chim Acta. 2007; 386: 69-75
        • Chiasson J.L.
        • Josse R.G.
        • Gomis R.
        • Hanefeld M.
        • Karasik A.
        • Laakso M.
        Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial.
        Jama. 2003; 290: 486-494
        • Iwahashi H.
        • Marukawa S.
        • Matsumoto Y.
        • Imagawa A.
        • Fukui K.
        • Sayama K.
        • et al.
        Insulin resistance in myotonic dystrophy can be improved by pioglitazone but not buformin.
        Diabetes J. 2003; 31: 92-96
        • Yamamoto T.
        • Oya Y.
        • Isobe T.
        • Shirafuji T.
        • Ogata K.
        • Ogawa M.
        • et al.
        Long-term treatment of diabetes mellitus in myotonic dystrophy with pioglitazone.
        Rinsho Shinkeigaku. 2005; 45
        • Kouki T.
        • Takasu N.
        • Nakachi A.
        • Tamanaha T.
        • Komiya I.
        • Tawata M.
        Low-dose metformin improves hyperglycaemia related to myotonic dystrophy.
        Diabet Med. 2005; 22: 346-347