Advertisement
Review| Volume 276, ISSUE 1-2, P1-5, January 15, 2009

Download started.

Ok

Cellular remyelinating therapy in multiple sclerosis

      Abstract

      Demyelination is a pathological hallmark of multiple sclerosis (MS), a chronic autoimmune disorder of the central nervous system (CNS) that affects mainly young people in western countries. Recent studies have shown that remyelination can be accomplished by supplying demyelinated regions with myelinogenic cells or neural stem cells via transplantation. The remyelinating effect of these cells may be via one or more mechanisms, including: 1) as an immunomodulator by producing soluble factors; 2) direct cell replacement by differentiating into neural and glial cells in the lesion; and 3) indirect action by promoting neural and glial differentiation of endogenous cells. Identifying these mechanisms will help in choosing an optimal and more effective approach for cell-based therapy. Here we present a brief view focusing on myelin-forming cell types that can be used for cell transplantation and draw on a variety of recent experimental findings to speculate on the likely future evolution of remyelinating therapies.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Wingerchuk D.M.
        Current evidence and therapeutic strategies for multiple sclerosis.
        Semin Neurol. 2008; 28: 56-68
        • Frohman E.M.
        • Racke M.K.
        • Raine C.S.
        Multiple sclerosis—the plaque and its pathogenesis.
        N Engl J Med. 2006; 354: 942-955
        • Muraro P.A.
        • Pette M.
        • Bielekova B.
        • McFarland H.F.
        • Martin R.
        Human autoreactive CD4+ T cells from naive CD45RA+ and memory CD45RO+ subsets differ with respect to epitope specificity and functional antigen avidity.
        J Immunol. 2000; 164: 5474-5481
        • Li Y.
        • Chu N.
        • Hu A.
        • Gran B.
        • Rostami A.
        • Zhang G.X.
        Increased IL-23p19 expression in multiple sclerosis lesions and its induction in microglia.
        Brain. 2007; 130: 490-501
        • Aktas O.
        • Waiczies S.
        • Zipp F.
        Neurodegeneration in autoimmune demyelination: recent mechanistic insights reveal novel therapeutic targets.
        J Neuroimmunol. 2007; 184: 17-26
        • Franklin R.J.
        Why does remyelination fail in multiple sclerosis?.
        Nat Rev Neurosci. 2002; 3: 705-714
        • Costello F.
        • Stuve O.
        • Weber M.S.
        • Zamvil S.S.
        • Frohman E.
        Combination therapies for multiple sclerosis: scientific rationale, clinical trials, and clinical practice.
        Curr Opin Neurol. 2007; 20: 281-285
        • Miller R.H.
        • Bai L.
        Cellular approaches for stimulating CNS remyelination.
        Regen Med. 2007; 2: 817-829
        • Matysiak M.
        • Stasiolek M.
        • Orlowski W.
        • Jurewicz A.
        • Janczar S.
        • Raine C.S.
        • Selmaj K.
        Stem cells ameliorate EAE via an indoleamine 2,3-dioxygenase (IDO) mechanism.
        J Neuroimmunol. 2008; 193: 12-23
        • Keirstead H.S.
        Stem cells for the treatment of myelin loss.
        Trends Neurosci. 2005; 28: 677-683
        • Pluchino S.
        • Martino G.
        The therapeutic use of stem cells for myelin repair in autoimmune demyelinating disorders.
        J Neurol Sci. 2005; 233: 117-119
        • Karussis D.
        • Kassis I.
        The potential use of stem cells in multiple sclerosis: An overview of the preclinical experience.
        Clin Neurol Neurosurg. 2008;
        • Peterson J.W.
        • Trapp B.D.
        Neuropathobiology of multiple sclerosis.
        Neurol Clin. 2005; 23 (vi-vii): 107-129
        • Zawadzka M.
        • Franklin R.J.
        Myelin regeneration in demyelinating disorders: new developments in biology and clinical pathology.
        Curr Opin Neurol. 2007; 20: 294-298
        • Patrikios P.
        • Stadelmann C.
        • Kutzelnigg A.
        • Rauschka H.
        • Schmidbauer M.
        • Laursen H.
        • Sorensen P.S.
        • Bruck W.
        • Lucchinetti C.
        • Lassmann H.
        Remyelination is extensive in a subset of multiple sclerosis patients.
        Brain. 2006; 129: 3165-3172
        • Lavdas A.A.
        • Papastefanaki F.
        • Thomaidou D.
        • Matsas R.
        Schwann cell transplantation for CNS repair.
        Curr Med Chem. 2008; 15: 151-160
        • Blakemore W.F.
        Regeneration and repair in multiple sclerosis: the view of experimental pathology.
        J Neurol Sci. 2008; 265: 1-4
        • Akiyama Y.
        • Radtke C.
        • Honmou O.
        • Kocsis J.D.
        Remyelination of the spinal cord following intravenous delivery of bone marrow cells.
        Glia. 2002; 39: 229-236
        • Faulkner J.
        • Keirstead H.S.
        Human embryonic stem cell-derived oligodendrocyte progenitors for the treatment of spinal cord injury.
        Transpl Immunol. 2005; 15: 131-142
        • Honmou O.
        • Felts P.A.
        • Waxman S.G.
        • Kocsis J.D.
        Restoration of normal conduction properties in demyelinated spinal cord axons in the adult rat by transplantation of exogenous Schwann cells.
        J Neurosci. 1996; 16: 3199-3208
        • Payne N.
        • Siatskas C.
        • Bernard C.C.
        The promise of stem cell and regenerative therapies for multiple sclerosis.
        J Autoimmun. 2008;
        • Zappia E.
        • Casazza S.
        • Pedemonte E.
        • Benvenuto F.
        • Bonanni I.
        • Gerdoni E.
        • Giunti D.
        • Ceravolo A.
        • Cazzanti F.
        • Frassoni F.
        • Mancardi G.
        • Uccelli A.
        Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy.
        Blood. 2005; 106: 1755-1761
        • Einstein O.
        • Fainstein N.
        • Vaknin I.
        • Mizrachi-Kol R.
        • Reihartz E.
        • Grigoriadis N.
        • Lavon I.
        • Baniyash M.
        • Lassmann H.
        • Ben-Hur T.
        Neural precursors attenuate autoimmune encephalomyelitis by peripheral immunosuppression.
        Ann Neurol. 2007; 61: 209-218
        • Fandrich F.
        • Lin X.
        • Chai G.X.
        • Schulze M.
        • Ganten D.
        • Bader M.
        • Holle J.
        • Huang D.S.
        • Parwaresch R.
        • Zavazava N.
        • Binas B.
        Preimplantation-stage stem cells induce long-term allogeneic graft acceptance without supplementary host conditioning.
        Nat Med. 2002; 8: 171-178
        • Keirstead H.S.
        • Nistor G.
        • Bernal G.
        • Totoiu M.
        • Cloutier F.
        • Sharp K.
        • Steward O.
        Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury.
        J Neurosci. 2005; 25: 4694-4705
        • Perier C.
        • Vila M.
        • Feger J.
        • Agid Y.
        • Hirsch E.C.
        Functional activity of zona incerta neurons is altered after nigrostriatal denervation in hemiparkinsonian rats.
        Exp Neurol. 2000; 162: 215-224
        • Keirstead H.S.
        Stem cell transplantation into the central nervous system and the control of differentiation.
        J Neurosci Res. 2001; 63: 233-236
        • Yoshizaki T.
        • Inaji M.
        • Kouike H.
        • Shimazaki T.
        • Sawamoto K.
        • Ando K.
        • Date I.
        • Kobayashi K.
        • Suhara T.
        • Uchiyama Y.
        • Okano H.
        Isolation and transplantation of dopaminergic neurons generated from mouse embryonic stem cells.
        Neurosci Lett. 2004; 363: 33-37
        • O'Leary M.T.
        • Blakemore W.F.
        Use of a rat Y chromosome probe to determine the long-term survival of glial cells transplanted into areas of CNS demyelination.
        J Neurocytol. 1997; 26: 191-206
        • Rice C.
        • Scolding N.
        Strategies for achieving and monitoring myelin repair.
        J Neurol. 2007; 254: 275-283
        • Pluchino S.
        • Quattrini A.
        • Brambilla E.
        • Gritti A.
        • Salani G.
        • Dina G.
        • Galli R.
        • Del Carro U.
        • Amadio S.
        • Bergami A.
        • Furlan R.
        • Comi G.
        • Vescovi A.L.
        • Martino G.
        Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis.
        Nature. 2003; 422: 688-694
        • Duncan I.D.
        Replacing cells in multiple sclerosis.
        J Neurol Sci. 2008; 265: 89-92
        • Wolswijk G.
        Oligodendrocyte survival, loss and birth in lesions of chronic-stage multiple sclerosis.
        Brain. 2000; 123: 105-115
        • Maeda Y.
        • Solanky M.
        • Menonna J.
        • Chapin J.
        • Li W.
        • Dowling P.
        Platelet-derived growth factor-alpha receptor-positive oligodendroglia are frequent in multiple sclerosis lesions.
        Ann Neurol. 2001; 49: 776-785
        • Lucchinetti C.F.
        • Parisi J.
        • Bruck W.
        The pathology of multiple sclerosis.
        Neurol Clin. 2005; 23 (vi): 77-105
        • Crang A.J.
        • Gilson J.
        • Blakemore W.F.
        The demonstration by transplantation of the very restricted remyelinating potential of post-mitotic oligodendrocytes.
        J Neurocytol. 1998; 27: 541-553
        • Franklin R.J.
        Remyelination of the demyelinated CNS: the case for and against transplantation of central, peripheral and olfactory glia.
        Brain Res Bull. 2002; 57: 827-832
        • Oudega M.
        Schwann cell and olfactory ensheathing cell implantation for repair of the contused spinal cord.
        Acta Physiol (Oxf). 2007; 189: 181-189
        • Kohama I.
        • Lankford K.L.
        • Preiningerova J.
        • White F.A.
        • Vollmer T.L.
        • Kocsis J.D.
        Transplantation of cryopreserved adult human Schwann cells enhances axonal conduction in demyelinated spinal cord.
        J Neurosci. 2001; 21: 944-950
        • Papastefanaki F.
        • Chen J.
        • Lavdas A.A.
        • Thomaidou D.
        • Schachner M.
        • Matsas R.
        Grafts of Schwann cells engineered to express PSA-NCAM promote functional recovery after spinal cord injury.
        Brain. 2007; 130: 2159-2174
        • Shields S.A.
        • Blakemore W.F.
        • Franklin R.J.
        Schwann cell remyelination is restricted to astrocyte-deficient areas after transplantation into demyelinated adult rat brain.
        J Neurosci Res. 2000; 60: 571-578
        • Lavdas A.A.
        • Franceschini I.
        • Dubois-Dalcq M.
        • Matsas R.
        Schwann cells genetically engineered to express PSA show enhanced migratory potential without impairment of their myelinating ability in vitro.
        Glia. 2006; 53: 868-878
        • Raisman G.
        Olfactory ensheathing cells and repair of brain and spinal cord injuries.
        Cloning Stem Cells. 2004; 6: 364-368
        • Richter M.W.
        • Roskams A.J.
        Olfactory ensheathing cell transplantation following spinal cord injury: hype or hope?.
        Exp Neurol. 2008; 209: 353-367
        • Sasaki M.
        • Lankford K.L.
        • Zemedkun M.
        • Kocsis J.D.
        Identified olfactory ensheathing cells transplanted into the transected dorsal funiculus bridge the lesion and form myelin.
        J Neurosci. 2004; 24: 8485-8493
        • Boyd J.G.
        • Lee J.
        • Skihar V.
        • Doucette R.
        • Kawaja M.D.
        LacZ-expressing olfactory ensheathing cells do not associate with myelinated axons after implantation into the compressed spinal cord.
        Proc Natl Acad Sci U S A. 2004; 101: 2162-2166
        • Lakatos A.
        • Franklin R.J.
        • Barnett S.C.
        Olfactory ensheathing cells and Schwann cells differ in their in vitro interactions with astrocytes.
        Glia. 2000; 32: 214-225
        • Karussis D.
        • Kassis I.
        • Kurkalli B.G.
        • Slavin S.
        Immunomodulation and neuroprotection with mesenchymal bone marrow stem cells (MSCs): a proposed treatment for multiple sclerosis and other neuroimmunological/neurodegenerative diseases.
        J Neurol Sci. 2008; 265: 131-135
        • Barnett S.C.
        • Riddell J.S.
        Olfactory ensheathing cells (OECs) and the treatment of CNS injury: advantages and possible caveats.
        J Anat. 2004; 204: 57-67
        • Barnett S.C.
        • Riddell J.S.
        Olfactory ensheathing cell transplantation as a strategy for spinal cord repair—what can it achieve?.
        Nat Clin Pract Neurol. 2007; 3: 152-161
        • Ben-Hur T.
        Immunomodulation by neural stem cells.
        J Neurol Sci. 2008; 265: 102-104
        • Nistor G.I.
        • Totoiu M.O.
        • Haque N.
        • Carpenter M.K.
        • Keirstead H.S.
        Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation.
        Glia. 2005; 49: 385-396
        • Brustle O.
        • Jones K.N.
        • Learish R.D.
        • Karram K.
        • Choudhary K.
        • Wiestler O.D.
        • Duncan I.D.
        • McKay R.D.
        Embryonic stem cell-derived glial precursors: a source of myelinating transplants.
        Science. 1999; 285: 754-756
        • Bjorklund L.M.
        • Sanchez-Pernaute R.
        • Chung S.
        • Andersson T.
        • Chen I.Y.
        • McNaught K.S.
        • Brownell A.L.
        • Jenkins B.G.
        • Wahlestedt C.
        • Kim K.S.
        • Isacson O.
        Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model.
        Proc Natl Acad Sci U S A. 2002; 99: 2344-2349
        • Draper J.S.
        • Smith K.
        • Gokhale P.
        • Moore H.D.
        • Maltby E.
        • Johnson J.
        • Meisner L.
        • Zwaka T.P.
        • Thomson J.A.
        • Andrews P.W.
        Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells.
        Nat Biotechnol. 2004; 22: 53-54
        • Quesenberry P.J.
        • Dooner G.
        • Colvin G.
        • Abedi M.
        Stem cell biology and the plasticity polemic.
        Exp Hematol. 2005; 33: 389-394
        • Nunes M.C.
        • Roy N.S.
        • Keyoung H.M.
        • Goodman R.R.
        • McKhann 2nd, G.
        • Jiang L.
        • Kang J.
        • Nedergaard M.
        • Goldman S.A.
        Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain.
        Nat Med. 2003; 9: 439-447
        • Iwanami A.
        • Kaneko S.
        • Nakamura M.
        • Kanemura Y.
        • Mori H.
        • Kobayashi S.
        • Yamasaki M.
        • Momoshima S.
        • Ishii H.
        • Ando K.
        • Tanioka Y.
        • Tamaoki N.
        • Nomura T.
        • Toyama Y.
        • Okano H.
        Transplantation of human neural stem cells for spinal cord injury in primates.
        J Neurosci Res. 2005; 80: 182-190
        • Magnus T.
        • Rao M.S.
        Neural stem cells in inflammatory CNS diseases: mechanisms and therapy.
        J Cell Mol Med. 2005; 9: 303-319
        • Horner P.J.
        • Gage F.H.
        Regenerating the damaged central nervous system.
        Nature. 2000; 407: 963-970
        • Ben-Hur T.
        • Einstein O.
        • Mizrachi-Kol R.
        • Ben-Menachem O.
        • Reinhartz E.
        • Karussis D.
        • Abramsky O.
        Transplanted multipotential neural precursor cells migrate into the inflamed white matter in response to experimental autoimmune encephalomyelitis.
        Glia. 2003; 41: 73-80
        • Magalon K.
        • Cantarella C.
        • Monti G.
        • Cayre M.
        • Durbec P.
        Enriched environment promotes adult neural progenitor cell mobilization in mouse demyelination models.
        Eur J Neurosci. 2007; 25: 761-771
        • Politi L.S.
        • Bacigaluppi M.
        • Brambilla E.
        • Cadioli M.
        • Falini A.
        • Comi G.
        • Scotti G.
        • Martino G.
        • Pluchino S.
        Magnetic-resonance-based tracking and quantification of intravenously injected neural stem cell accumulation in the brains of mice with experimental multiple sclerosis.
        Stem Cells. 2007; 25: 2583-2592
        • Mezey E.
        • Key S.
        • Vogelsang G.
        • Szalayova I.
        • Lange G.D.
        • Crain B.
        Transplanted bone marrow generates new neurons in human brains.
        Proc Natl Acad Sci U S A. 2003; 100: 1364-1369
        • Song S.
        • Sanchez-Ramos J.
        Preparation of neural progenitors from bone marrow and umbilical cord blood.
        Methods Mol Biol. 2008; 438: 123-134
        • Alvarez-Dolado M.
        • Pardal R.
        • Garcia-Verdugo J.M.
        • Fike J.R.
        • Lee H.O.
        • Pfeffer K.
        • Lois C.
        • Morrison S.J.
        • Alvarez-Buylla A.
        Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes.
        Nature. 2003; 425: 968-973
        • Castro R.F.
        • Jackson K.A.
        • Goodell M.A.
        • Robertson C.S.
        • Liu H.
        • Shine H.D.
        Failure of bone marrow cells to transdifferentiate into neural cells in vivo.
        Science. 2002; 297: 1299
        • Roybon L.
        • Ma Z.
        • Asztely F.
        • Fosum A.
        • Jacobsen S.E.
        • Brundin P.
        • Li J.Y.
        Failure of transdifferentiation of adult hematopoietic stem cells into neurons.
        Stem Cells. 2006; 24: 1594-1604
        • Bonilla S.
        • Silva A.
        • Valdes L.
        • Geijo E.
        • Garcia-Verdugo J.M.
        • Martinez S.
        Functional neural stem cells derived from adult bone marrow.
        Neuroscience. 2005; 133: 85-95
        • Kabos P.
        • Ehtesham M.
        • Kabosova A.
        • Black K.L.
        • Yu J.S.
        Generation of neural progenitor cells from whole adult bone marrow.
        Exp Neurol. 2002; 178: 288-293
        • Brazelton T.R.
        • Rossi F.M.
        • Keshet G.I.
        • Blau H.M.
        From marrow to brain: expression of neuronal phenotypes in adult mice.
        Science. 2000; 290: 1775-1779
        • Tropel P.
        • Platet N.
        • Platel J.C.
        • Noel D.
        • Albrieux M.
        • Benabid A.L.
        • Berger F.
        Functional neuronal differentiation of bone marrow-derived mesenchymal stem cells.
        Stem Cells. 2006; 24: 2868-2876
        • Gerdoni E.
        • Gallo B.
        • Casazza S.
        • Musio S.
        • Bonanni I.
        • Pedemonte E.
        • Mantegazza R.
        • Frassoni F.
        • Mancardi G.
        • Pedotti R.
        • Uccelli A.
        Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis.
        Ann Neurol. 2007; 61: 219-227
        • Zhang J.
        • Li Y.
        • Chen J.
        • Cui Y.
        • Lu M.
        • Elias S.B.
        • Mitchell J.B.
        • Hammill L.
        • Vanguri P.
        • Chopp M.
        Human bone marrow stromal cell treatment improves neurological functional recovery in EAE mice.
        Exp Neurol. 2005; 195: 16-26
        • Krampera M.
        • Pasini A.
        • Pizzolo G.
        • Cosmi L.
        • Romagnani S.
        • Annunziato F.
        Regenerative and immunomodulatory potential of mesenchymal stem cells.
        Curr Opin Pharmacol. 2006; 6: 435-441
        • Le Blanc K.
        • Tammik L.
        • Sundberg B.
        • Haynesworth S.E.
        • Ringden O.
        Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex.
        Scand J Immunol. 2003; 57: 11-20
        • Beyth S.
        • Borovsky Z.
        • Mevorach D.
        • Liebergall M.
        • Gazit Z.
        • Aslan H.
        • Galun E.
        • Rachmilewitz J.
        Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness.
        Blood. 2005; 105: 2214-2219
        • Spaggiari G.M.
        • Capobianco A.
        • Becchetti S.
        • Mingari M.C.
        • Moretta L.
        Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation.
        Blood. 2006; 107: 1484-1490