Advertisement

Compartmentalization of inflammation in the CNS: A major mechanism driving progressive multiple sclerosis

      Abstract

      In multiple sclerosis (MS) the CNS is not only the target of the pathological immune response, but the CNS itself becomes an immunological compartment during the course of the disease. This comprises (i) inflammation beyond classical white matter lesions, (ii) intrathecal Ig production with oligoclonal bands, (iii) an environment fostering immune cell persistence, (iv) follicle-like aggregates in the meninges, (v) a disruption of the blood-brain barrier also outside of active lesions, which allows influx of autoantibodies possibly promoting demyelination or axonal injury and influx of fibrinogen driving inflammation.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kutzelnigg A.
        • Lucchinetti C.F.
        • Stadelmann C.
        • Brück W.
        • Rauschka H.
        • Bergmann M.
        • et al.
        Cortical demyelination and diffuse white matter injury in multiple sclerosis.
        Brain. 2005; 128: 2705-2712
        • Bo L.
        • Geurts J.J.
        • d. van,V.
        • Polman C.
        • Barkhof F.
        Lack of correlation between cortical demyelination and white matter pathologic changes in multiple sclerosis.
        Arch Neurol. 2007; 64: 76-80
        • Gilmore C.P.
        • Bo L.
        • Owens T.
        • Lowe J.
        • Esiri M.M.
        • Evangelou N.
        Spinal cord gray matter demyelination in multiple sclerosis—a novel pattern of residual plaque morphology.
        Brain Pathol. 2006; 16: 202-208
        • Kutzelnigg A.
        • Faber-Rod J.C.
        • Bauer J.
        • Lucchinetti C.F.
        • Sorensen P.S.
        • Laursen H.
        • et al.
        Widespread demyelination in the cerebellar cortex in multiple sclerosis.
        Brain Pathol. 2007; 17: 38-44
        • Junker A.
        • Ivanidze J.
        • Malotka J.
        • Eiglmeier I.
        • Lassmann H.
        • Wekerle H.
        • et al.
        Multiple sclerosis: T-cell receptor expression in distinct brain regions.
        Brain. 2007; 130: 2789-2799
        • Serafini B.
        • Rosicarelli B.
        • Magliozzi R.
        • Stille W.
        • Aloisi F.
        Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis.
        Brain Pathol. 2004; 14: 164-174
        • Magliozzi R.
        • Howell O.
        • Vora A.
        • Serafini B.
        • Nicholas R.
        • Puopolo M.
        • et al.
        Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology.
        Brain. 2007; 130: 1089-1104
        • Serafini B.
        • Rosicarelli B.
        • Franciotta D.
        • Magliozzi R.
        • Reynolds R.
        • Cinque P.
        • et al.
        Dysregulated Epstein–Barr virus infection in the multiple sclerosis brain.
        J Exp Med. 2007; 204: 2899-2912
        • Meinl E.
        • Krumbholz M.
        • Hohlfeld R.
        B lineage cells in the inflammatory central nervous system environment: migration, maintenance, local antibody production, and therapeutic modulation.
        Ann Neurol. 2006; 59: 880-892
        • Obermeier B.
        • Mentele R.
        • Malotka J.
        • Kellermann J.
        • Kümpfel T.
        • Wekerle H.
        • et al.
        Matching of oligoclonal Ig transcriptomes and proteomes of cerebrospinal fluid in multiple sclerosis.
        Nat Med. 2008; 14: 688-693
        • Walsh M.J.
        • Tourtellotte W.W.
        Temporal invariance and clonal uniformity of brain and cerebrospinal IgG, IgA, and IgM in multiple sclerosis.
        J Exp Med. 1986; 163: 41-53
        • Thompson E.J.
        • Kaufmann P.
        • Rudge P.
        Sequential changes in oligoclonal patterns during the course of multiple sclerosis.
        J Neurol Neurosurg Psychiatry. 1983; 46: 547-550
        • Qin Y.
        • Duquette P.
        • Zhang Y.
        • Talbot P.
        • Poole R.
        • Antel J.
        Clonal expansion and somatic hypermutation of V(H) genes of B cells from cerebrospinal fluid in multiple sclerosis.
        J Clin Invest. 1998; 102: 1045-1050
        • Owens G.P.
        • Kraus H.
        • Burgoon M.P.
        • Smith-Jensen T.
        • Devlin M.E.
        • Gilden D.H.
        Restricted use of VH4 germline segments in an acute multiple sclerosis brain.
        Ann Neurol. 1998; 43: 236-243
        • Charo I.F.
        • Ransohoff R.M.
        The many roles of chemokines and chemokine receptors in inflammation.
        N Engl J Med. 2006; 354: 610-621
        • Krumbholz M.
        • Theil D.
        • Cepok S.
        • Hemmer B.
        • Kivisakk P.
        • Ransohoff R.M.
        • et al.
        Chemokines in multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment.
        Brain. 2006; 129: 200-211
        • Krumbholz M.
        • Theil D.
        • Steinmeyer F.
        • Cepok S.
        • Hemmer B.
        • Hofbauer M.
        • et al.
        CCL19 is constitutively expressed in the CNS, up-regulated in neuroinflammation, active and also inactive multiple sclerosis lesions.
        J Neuroimmunol. 2007; 190: 72-79
        • Corcione A.
        • Casazza S.
        • Ferretti E.
        • Giunti D.
        • Zappia E.
        • Pistorio A.
        • et al.
        Recapitulation of B cell differentiation in the central nervous system of patients with multiple sclerosis.
        Proc Natl Acad Sci U S A. 2004; 101: 11064-11069
        • Sorensen T.L.
        • Sellebjerg F.
        • Jensen C.V.
        • Strieter R.M.
        • Ransohoff R.M.
        Chemokines CXCL10 and CCL2: differential involvement in intrathecal inflammation in multiple sclerosis.
        Eur J Neurol. 2001; 8: 665-672
        • Cepok S.
        • Rosche B.
        • Grummel V.
        • Vogel F.
        • Zhou D.
        • Sayn J.
        • et al.
        Short-lived plasma blasts are the main B cell effector subset during the course of multiple sclerosis.
        Brain. 2005; 128: 1667-1676
        • Winges K.M.
        • Gilden D.H.
        • Bennett J.L.
        • Yu X.
        • Ritchie A.M.
        • Owens G.P.
        Analysis of multiple sclerosis cerebrospinal fluid reveals a continuum of clonally related antibody-secreting cells that are predominantly plasma blasts.
        J Neuroimmunol. 2007; 192: 226-234
        • Manz R.A.
        • Hauser A.E.
        • Hiepe F.
        • Radbruch A.
        Maintenance of serum antibody levels.
        Annu Rev Immunol. 2005; 23: 367-386
        • Li M.
        • Ransohoff R.M.
        Multiple roles of chemokine CXCL12 in the central nervous system: a migration from immunology to neurobiology.
        Prog Neurobiol. 2008; 84: 116-131
        • Schneider P.
        The role of APRIL and BAFF in lymphocyte activation.
        Curr Opin Immunol. 2005; 17: 282-289
        • Avery D.T.
        • Kalled S.L.
        • Ellyard J.I.
        • Ambrose C.
        • Bixler S.A.
        • Thien M.
        • et al.
        BAFF selectively enhances the survival of plasmablasts generated from human memory B cells.
        J Clin Invest. 2003; 112: 286-297
        • Krumbholz M.
        • Theil D.
        • Derfuss T.
        • Rosenwald A.
        • Schrader F.
        • Monoranu C.M.
        • et al.
        BAFF is produced by astrocytes and upregulated in multiple sclerosis lesions and primary central nervous system lymphoma.
        J Exp Med. 2005; 201: 195-200
        • Leech S.
        • Kirk J.
        • Plumb J.
        • McQuaid S.
        Persistent endothelial abnormalities and blood-brain barrier leak in primary and secondary progressive multiple sclerosis.
        Neuropathol Appl Neurobiol. 2007; 33: 86-98
        • Hochmeister S.
        • Grundtner R.
        • Bauer J.
        • Engelhardt B.
        • Lyck R.
        • Gordon G.
        • et al.
        Dysferlin is a new marker for leaky brain blood vessels in multiple sclerosis.
        J Neuropathol Exp Neurol. 2006; 65: 855-865
        • Adams R.A.
        • Bauer J.
        • Flick M.J.
        • Sikorski S.L.
        • Nuriel T.
        • Lassmann H.
        • et al.
        The fibrin-derived gamma377–395 peptide inhibits microglia activation and suppresses relapsing paralysis in central nervous system autoimmune disease.
        J Exp Med. 2007; 204: 571-582
        • Zhou D.
        • Srivastava R.
        • Nessler S.
        • Grummel V.
        • Sommer N.
        • Bruck W.
        • et al.
        Identification of a pathogenic antibody response to native myelin oligodendrocyte glycoprotein in multiple sclerosis.
        Proc Natl Acad Sci U S A. 2006; 103: 19057-19062
        • O'Connor K.C.
        • McLaughlin K.A.
        • De Jager P.L.
        • Chitnis T.
        • Bettelli E.
        • Xu C.
        • et al.
        Self-antigen tetramers discriminate between myelin autoantibodies to native or denatured protein.
        Nat Med. 2007; 13: 211-217
        • Mathey E.K.
        • Derfuss T.
        • Storch M.K.
        • Williams K.R.
        • Hales K.
        • Woolley D.R.
        • et al.
        Neurofascin as a novel target for autoantibody-mediated axonal injury.
        J Exp Med. 2007; 204: 2363-2372