Advertisement
Research Article| Volume 274, ISSUE 1-2, P45-47, November 15, 2008

Mechanisms of inflammation induced tissue injury in multiple sclerosis

      Abstract

      Understanding the mechanisms of tissue injury in multiple sclerosis brains is a prerequisite for specific protective therapy. Here we review recent data, suggesting that demyelination and axonal injury in MS may be induced by different mechanisms involving adaptive and innate immunity. The relative contribution of the different immune reactions may in part explain the inter-individual and stage dependent heterogeneity of multiple sclerosis lesions.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hendriks J.J.
        • Teunissen C.E.
        • de Vries H.E.
        • Dijkstra C.D.
        Macrophages and neurodegeneration.
        Brain Res Brain Res Rev. 2006; 48: 185-195
        • Huseby E.S.
        • Liggitt D.
        • Brabb T.
        • Schnabel B.
        • Ohlen C.
        • Goverman J.
        A pathogenic role for myelin-specific CD8(+) T cells in a model for multiple sclerosis.
        J Exp Med. 2001; 194: 669-676
        • Cabarrocas J.
        • Bauer J.
        • Piaggio E.
        • Liblau R.
        • Lassmann H.
        Effective and selective immune surveillance of the brain by MHC class I-restricted cytotoxic T lymphocytes.
        Eur-J-Immunol. 2003; 33: 1174-1182
        • Linington C.
        • Bradl M.
        • Lassmann H.
        • Brunner C.
        • Vass K.
        Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein.
        Amer J Pathol. 1988; 130: 443-454
        • Felts P.A.
        • Woolston A.M.
        • Fernando H.B.
        • Asquith S.
        • Gregson N.A.
        • Mizzi O.J.
        • et al.
        Inflammation and primary demyelination induced by the intraspinal injection of lipopolysaccharide.
        Brain. 2005; 128: 1649-1666
        • Kutzelnigg A.
        • Lucchinetti C.F.
        • Stadelmann C.
        • Bruck W.
        • Rauschka H.
        • Bergmann M.
        • et al.
        Cortical demyelination and diffuse white matter injury in multiple sclerosis.
        Brain. 2005; 128: 2705-2712
        • Hochmeister S.
        • Grundtner P.
        • Bauer J.
        • Engelhardt B.
        • Lyck R.
        • Gordon G.
        • et al.
        Dysferlin is a new marker for leaky blood vessels in multiple sclerosis.
        J Neuropath Exp Neurol. 2006; 65: 855-865
        • Lucchinetti C.
        • Brück W.
        • Parisi J.
        • Scheithauer B.
        • Rodriguez M.
        • Lassmann H.
        Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination.
        Ann Neurol. 2000; 47: 707-717
        • Prineas J.W.
        • Kwon E.E.
        • Cho E.S.
        • Sharer L.R.
        • Barnett M.H.
        • Oleszak E.L.
        • et al.
        Immunopathology of secondary-progressive multiple sclerosis.
        Ann Neurol. 2001; 50: 646-657
        • Kidd T.
        • Barkhof F.
        • McConnell R.
        • Algra P.R.
        • Allen I.V.
        • Revesz T.
        Cortical lesions in multiple sclerosis.
        Brain. 1999; 122: 17-26
        • Peterson J.W.
        • Bo L.
        • Mork S.
        • Chang A.
        • Trapp B.D.
        Transsected neurites, apoptotic neurons and reduced inflammation in cortical multiple sclerosis lesions.
        Ann. Neurol. 2001; 50: 389-400
        • Babbe H.
        • Roers A.
        • Waisman A.
        • Lassmann H.
        • Goebels N.
        • Hohlfeld R.
        • et al.
        Clonal expansion of CD8+ T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction.
        J Exp Med. 2000; 192: 393-404
        • Skulina C.
        • Schmidt S.
        • Dornmair K.
        • Babbe H.
        • Roers A.
        • Rajewsky K.
        • et al.
        Multiple sclerosis: brain infiltrating CD8+ T-cells persist as clonal expansions in the cerebrospinal fluid and blood.
        Proc. Natl Acad Sci (USA). 2004; 101: 2428-2433
        • Junker A.
        • Ivanidze J.
        • Malotka J.
        • Eiglmeier I.
        • Lassmann H.
        • Wekerle H.
        • et al.
        Multiple sclerosis: T-cell receptor expression in distinct brain regions.
        Brain. 2007; 130: 2789-2799
        • Hoeftberger R.
        • Aboul-Enein F.
        • Brueck W.
        • Lucchinetti C.
        • Rodriguez M.
        • Schmidbauer M.
        • et al.
        Expression of major histocompatibility complex class I molecules on the different cell types in multiple sclerosis lesions.
        Brain-Pathol. 2004; 14: 43-55
        • Zhang Y.C.
        • Li S.
        • Rivera V.M.
        • Hong J.
        • Robinson R.R.
        • Breitbach W.T.
        • et al.
        Increased CD8+ cytotoxic T cell responses to myelin basic protein in multiple sclerosis.
        J Immunol. 2004; 172: 5120-5127
        • Seitz S.
        • Schneider C.K.
        • Malotka J.
        • Nong X.
        • Engel A.G.
        • Wekerle H.
        • et al.
        Reconstitution of paired T cell receptor alpha- and beta-chains from microdissected single cells of human inflammatory tissues.
        Proc Natl Acad Sci (USA). 2006; 103: 12057-12062
        • Berger T.
        • Rubner P.
        • Schautzer F.
        • Egg R.
        • Ulmer H.
        • Mayringer I.
        • et al.
        Antimyelin antibodies as a predictor of clinically definite multiple sclerosis after the first demyelinating event.
        New Engl J Med. 2003; 349: 139-145
        • Kanter J.L.
        • Narayana S.
        • Ho P.P.
        • Catz I.
        • Warren K.G.
        • Sobel R.A.
        • et al.
        Lipid microarrays identify key mediators of autoimmune brain inflammation.
        Nat Med. 2006; 12: 138-143
        • Lennon V.A.
        • Kryzer T.J.
        • Pittock S.J.
        • Verkman A.S.
        • Hinson S.R.
        IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel.
        J Exp Med. 2005; 202: 473-477
        • Lennon V.A.
        • Wingerchuk D.N.
        • Kryzer T.J.
        • Pittock S.J.
        • Lucchinetti C.F.
        • Fujihara K.
        • et al.
        A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis.
        Lancet. 2004; 364: 2106-2112
        • Lucchinetti C.F.
        • Mandler R.N.
        • McGavern D.
        • Bruck W.
        • Gleich G.
        • Ransohoff R.M.
        • et al.
        A role for humoral mechanisms in the pathogenesis of Devic's neuromyelitis optica.
        Brain. 2002; 125: 1450-1461
        • Roemer S.F.
        • Parisi J.E.
        • Lennon V.A.
        • Bennaroch E.E.
        • Lassmann H.
        • Brück W.
        • et al.
        Pattern-specific loss of aquaporin 4 immunoreactivity distinguishes neuromyelitis optica from multiple sclerosis.
        Brain. 2007; 130: 1194-1205
        • Zhou D.
        • Srivastava R.
        • Nessler S.
        • Grummel V.
        • Sommer N.
        • Brück W.
        • et al.
        Identification of a pathogenic antibody response to native myelin oligodendrocyte glycoprotein in multiple sclerosis.
        Proc Natl Acad Sci (USA). 2006; 103: 19057-19062
        • Mathey E.K.
        • Derfuss T.
        • Storch M.K.
        • Williams K.R.
        • Hales K.
        • Wooley D.R.
        • et al.
        Neurofascin as a novel target for autoantibody-mediated axonal injury.
        J Exp Med. 2007; 204: 2363-2372
        • Barnett M.H.
        • Prineas J.W.
        Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion.
        Ann Neurol. 2004; 55: 458-468
        • Marik C.
        • Felts P.
        • Bauer J.
        • Lassmann H.
        • Smith K.J.
        Lesion genesis in a subset of patients with multiple sclerosis: a role for innate immunity?.
        Brain. 2007; 130: 2800-2815
        • Adams R.A.
        • Bauer J.
        • Flick M.J.
        • Sikoski S.L.
        • Nuriel T.
        • Lassmann H.
        • et al.
        The fibrin-derived gamma377-395 peptide inhibits microglia activation and suppresses relapsing paralysis in central nervous system autoimmune disease.
        J Exp Med. 2007; 204: 571-582
        • Diestel A.
        • Atkas O.
        • Hackel D.
        • Hake I.
        • Meier S.
        • Raine C.S.
        • et al.
        Activation of microglial poly(ADP-ribose)-polymerase-1 by cholesterol breakdown products during neuroinflammation: a link between demyelination and neuronal damage.
        J Exp Med. 2003; 198: 1729-1740
        • Anderson A.C.
        • Anderson D.E.
        • Bregoli L.
        • Hastings W.D.
        • Kassam N.
        • Lei C.
        • et al.
        Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells.
        Science. 2007; 318: 1141-1143
        • Aboul-Enein F.
        • Rauschka H.
        • Kornek B.
        • Stadelmann C.
        • Stefferl A.
        • Bruck W.
        • et al.
        Preferential loss of myelin-associated glycoprotein reflects hypoxia-like white matter damage in stroke and inflammatory brain diseases.
        J Neuropathol Exp Neurol. 2003; 62: 25-33
        • Graumann U.
        • Reynolds R.
        • Steck A.J.
        • Schaeren-Wiemers N.
        Molecular changes in normal appearing white matter in multiple sclerosis are characteristic of neuroprotective mechanisms against hypoxic insult.
        Brain Pathol. 2003; 13: 554-573
        • Evangelou N.
        • Konz D.
        • Esiri M.M.
        • Smith S.
        • Palace J.
        • Matthews P.M.
        Size-selective neuronal changes in the anterior optic pathways suggest a differential susceptibility to injury in multiple sclerosis.
        Brain. 2001; 124: 1813-1820
        • Stys P.K.
        General mechanisms of axonal damage and its prevention.
        J Neurol Sci. 2005; 133: 3-13
        • Dutta R.
        • McDonough J.
        • Yin X.
        • Peterson J.
        • Chang A.
        • Torres T.
        • et al.
        Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis.
        Ann Neurol. 2006; 59: 478-489
        • Smith K.J.
        Sodium channels and multiple sclerosis: roles in symptom production, damage and therapy.
        Brain Pathol. 2007; 17: 230-242
        • Bechtold D.A.
        • Miller S.J.
        • Dawson A.C.
        • Sun Y.
        • Kapoor R.
        • Berry D.
        • et al.
        Axonal protection achieved in a model of multiple sclerosis using lamotrigine.
        J Neurol. 2006; 253: 1542-1551
        • Black J.A.
        • Liu S.
        • Hains B.C.
        • Saab C.Y.
        • Waxman S.G.
        Long-term protection of central axons with phenytoin in monophasic and chronic-relapsing EAE.
        Brain. 2006; 129: 3147-3149
        • Forte M.
        • Gold B.G.
        • Marracci G.
        • Chaudhary P.
        • Basso E.
        • Johnsen D.
        • et al.
        Cyclophilin D inactivation protects axons in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis.
        Proc Natl Acad Sci (USA). 2007; 104: 7558-7563