Can low level exposure to ochratoxin-A cause parkinsonism?

      Abstract

      Mycotoxins are fungal metabolites with pharmacological activities that have been utilized in the production of antibiotics, growth promoters, and other classes of drugs. Some mycotoxins have been developed as biological and chemical warfare agents. Bombs and ballistic missiles loaded with aflatoxin were stockpiled and may have been deployed by Iraq during the first Gulf War. In light of the excess incidence of amyotrophic lateral sclerosis (ALS) in veterans from Operation Desert Storm, the potential for delayed neurotoxic effects of low doses of mycotoxins should not be overlooked. Ochratoxin-A (OTA) is a common mycotoxin with complex mechanisms of action, similar to that of the aflatoxins. Acute administration of OTA at non-lethal doses (10% of the LD50) have been shown to increase oxidative DNA damage in brain up to 72 h, with peak effects noted at 24 h in midbrain (MB), caudate/putamen (CP) and hippocampus (HP). Levels of dopamine (DA) and its metabolites in the striatum (e.g., CP) were shown to be decreased in a dose-dependent manner. The present study focused on the effects of chronic low dose OTA exposure on regional brain oxidative stress and striatal DA metabolism. Continuous administration of low doses of OTA with implanted subcutaneous Alzet minipumps caused a small but significant decrease in striatal DA levels and an upregulation of anti-oxidative systems and DNA repair. It is possible that low dose exposure to OTA will result in an earlier onset of parkinsonism when normal age-dependent decline in striatal DA levels are superimposed on the mycotoxin-induced lesion.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Zilinskas R.A.
        Iraq's biological weapons. The past as future?.
        JAMA. 1997; 278: 418-424
        • Bennett J.W.
        • Klich M.
        Mycotoxins.
        Clin Microbiol Rev. 2003; 16: 497-516
        • Stone R.
        Biodefense. Peering into the shadows: Iraq's bioweapons program.
        Science. 2002; 297: 1110-1112
        • Haley R.W.
        Excess incidence of ALS in young Gulf War veterans.
        Neurology. 2003; 61: 750-756
        • Haley R.W.
        Gulf war syndrome: narrowing the possibilities.
        Lancet Neurol. 2003; 2: 272-273
        • Kuiper-Goodman T.
        • Scott P.M.
        Risk assessment of the mycotoxin ochratoxin A.
        Biomed Environ Sci. 1989; 2: 179-248
        • Galtier P.
        Pharmacokinetics of ochratoxin A in animals.
        IARC Sci Publ. 1991; : 187-200
        • Marquardt R.R.
        • Frohlich A.A.
        A review of recent advances in understanding ochratoxicosis.
        J Anim Sci. 1992; 70: 3968-3988
        • Hayes A.W.
        • Hood R.D.
        • Lee H.L.
        Teratogenic effects of ochratoxin A in mice.
        Teratology. 1974; 9: 93-97
        • Wangikar P.B.
        • Dwivedi P.
        • Sharma A.K.
        • Sinha N.
        Effect in rats of simultaneous prenatal exposure to ochratoxin A and aflatoxin B(1). II. Histopathological features of teratological anomalies induced in fetuses.
        Birth Defects Res B Dev Reprod Toxicol. 2004; 71: 352-358
        • Belmadani A.
        • Tramu G.
        • Betbeder A.M.
        • Steyn P.S.
        • Creppy E.E.
        Regional selectivity to ochratoxin A, distribution and cytotoxicity in rat brain.
        Arch Toxicol. 1998; 72: 656-662
        • Sava V.
        • Reunova O.
        • Velasquez A.
        • Harbison R.
        • Sanchez-Ramos J.
        Acute neurotoxic effects of the fungal metabolite ochratoxin-A.
        Neurotoxicology. 2006; 27: 82-92
        • Robbins J.H.
        • Otsuka F.
        • Tarone R.E.
        • Polinsky R.J.
        • Brumback R.A.
        • Nee L.E.
        Parkinson's disease and Alzheimer's disease: hypersensitivity to X-rays in culture cell lines.
        J Neurol Neurosurg Psychiatry. 1985; 48: 916-923
        • Cardozo-Pelaez F.
        • Song S.
        • Parthasarathy A.
        • Hazzi C.
        • Naidu K.
        • Sanchez-Ramos J.
        Oxidative DNA damage in the aging mouse brain.
        Mov Disord. 1999; 14: 972-980
        • Cardozo-Pelaez F.
        • Brooks P.J.
        • Stedeford T.
        • Song S.
        • Sanchez-Ramos J.
        DNA damage, repair, and antioxidant systems in brain regions: a correlative study.
        Free Radic Biol Med. 2000; 28: 779-785
        • Smith P.K.
        • Krohn R.I.
        • Hermanson G.T.
        • Mallia A.K.
        • Gartner F.H.
        • Provenzano M.D.
        • et al.
        Measurement of protein using bicinchoninic acid.
        Anal Biochem. 1985; 150: 76-85
        • Mazzarello P.
        • Poloni M.
        • Spadari S.
        • Focher F.
        DNA repair mechanisms in neurological diseases: facts and hypotheses.
        J Neurol Sci. 1992; 112: 4-14
        • Lovell M.A.
        • Xie C.
        • Markesbery W.R.
        Decreased base excision repair and increased helicase activity in Alzheimer's disease brain.
        Brain Res. 2000; 855: 116-123
        • Hanawalt P.C.
        Transcription-coupled repair and human disease: perspective.
        Science. 1994; 266: 1957-1958
        • Sanchez-Ramos J.
        • Overvik E.
        • Ames B.N.
        A marker of oxyradical-mediated DNA damage (oxo8dG) is increased in nigro-striatum of Parkinson's disease brain.
        Neurodegeneration (incorporated into Exp Neurology). 1994; 3: 197-204
        • Cardozo-Pelaez F.
        • Stedeford T.J.
        • Brooks P.J.
        • Song S.
        • Sanchez-Ramos J.R.
        Effects of diethylmaleate on DNA damage and repair in the mouse brain.
        Free Radic Biol Med. 2002; 33: 292-298
        • Wei Y.H.
        • Lu C.Y.
        • Lin T.N.
        • Wei R.D.
        Effect of ochratoxin A on rat liver mitochondrial respiration and oxidative phosphorylation.
        Toxicology. 1985; 36: 119-130
        • Aleo M.D.
        • Wyatt R.D.
        • Schnellmann R.G.
        Mitochondrial dysfunction is an early event in ochratoxin A but not oosporein toxicity to rat renal proximal tubules.
        Toxicol Appl Pharmacol. 1991; 107: 73-80
        • Vyas I.
        • Heikkila R.E.
        • Nicklas W.J.
        Studies on the neurotoxicity of MPTP; inhibition of NAD-linked substrate oxidation by its metabolite, MPP+.
        J Neurochem. 1986; 46: 1501-1507
        • Hasegawa E.
        • Takeshige K.
        • Oishi T.
        • Murai Y.
        • Minakami S.
        MPP+ induces NADH-dependent superoxide formation and enhances NADH-dependent lipid peroxidation in bovine heart submitochondrial particles.
        Biochem Biophys Res Commun. 1990; 170: 1049-1055
        • Betarbet R.
        • Sherer T.B.
        • MacKenzie G.
        • Garcia-Osuna M.
        • Panov A.V.
        • Greenamyre T.
        Chronic systemic pesticide exposure reproduces features of Parkinson's disease.
        Nat Neurosci. 2000; 3: 1301-1306
        • Schulz J.B.
        • Henshaw D.R.
        • MacGarvey U.
        • Beal M.F.
        Involvement of oxidative stress in 3-nitropropionic acid neurotoxicity.
        Neurochem Int. 1996; 29: 167-171
        • Calabresi P.
        • Gubellini P.
        • Picconi B.
        • Centonze D.
        • Pisani A.
        • Bonsi P.
        • et al.
        Inhibition of mitochondrial complex II induces a long-term potentiation of NMDA-mediated synaptic excitation in the striatum requiring endogenous dopamine.
        J Neurosci. 2001; 21: 5110-5120
        • Turski L.
        • Turski W.A.
        Towards an understanding of the role of glutamate in neurodegenerative disorders: energy metabolism and neuropathology.
        Experientia. 1993; 49: 1064-1072
        • Greenamyre J.T.
        • MacKenzie G.
        • Peng T.I.
        • Stephans S.E.
        Mitochondrial dysfunction in Parkinson's disease.
        Biochem Soc Symp. 1999; 66: 85-97
        • Thomas J.A.
        • Mallis R.J.
        Aging and oxidation of reactive protein sulfhydryls.
        Exp Gerontol. 2001; 36: 1519-1526
        • Bryan N.S.
        • Rassaf T.
        • Maloney R.E.
        • Rodriguez C.M.
        • Saijo F.
        • Rodriguez J.R.
        • et al.
        Cellular targets and mechanisms of nitros(yl)ation: an insight into their nature and kinetics in vivo.
        Proc Natl Acad Sci U S A. 2004; 101: 4308-4313
        • Bunge I.
        • Dirheimer G.
        • Roschenthaler R.
        In vivo and in vitro inhibition of protein synthesis in Bacillus stearothermophilus by ochratoxin A.
        Biochem Biophys Res Commun. 1978; 83: 398-405
        • Creppy E.E.
        • Kern D.
        • Steyn P.S.
        • Vleggaar R.
        • Roschenthaler R.
        • Dirheimer G.
        Comparative study of the effect of ochratoxin A analogues on yeast aminoacyl-tRNA synthetases and on the growth and protein synthesis of hepatoma cells.
        Toxicol Lett. 1983; 19: 217-224
        • Creppy E.E.
        • Chakor K.
        • Fisher M.J.
        • Dirheimer G.
        The myocotoxin ochratoxin A is a substrate for phenylalanine hydroxylase in isolated rat hepatocytes and in vivo.
        Arch Toxicol. 1990; 64: 279-284