Research Article| Volume 249, ISSUE 1, P31-38, November 01, 2006

Download started.


Effects of transcranial direct current stimulation on working memory in patients with Parkinson's disease



      Cognitive impairment is a common feature in Parkinson's disease (PD) and is an important predictor of quality of life. Past studies showed that some aspects of cognition, such as working memory, can be enhanced following dopaminergic therapy and transcranial magnetic stimulation. The aim of our study was to investigate whether another form of noninvasive brain stimulation, anodal transcranial direct current stimulation (tDCS), which increases cortical excitability, is associated with a change in a working memory task performance in PD patients.


      We studied 18 patients (12 men and 6 women) with idiopathic PD. The patients performed a three-back working memory task during active anodal tDCS of the left dorsolateral prefrontal cortex (LDLPFC), anodal tDCS of the primary motor cortex (M1) or sham tDCS. In addition, patients underwent two different types of stimulation with different intensities: 1 and 2 mA.


      The results of this study show a significant improvement in working memory as indexed by task accuracy, after active anodal tDCS of the LDLPFC with 2 mA. The other conditions of stimulation: sham tDCS, anodal tDCS of LDLPFC with 1 mA or anodal tDCS of M1 did not result in a significant task performance change.


      tDCS may exert a beneficial effect on working memory in PD patients that depends on the intensity and site of stimulation. This effect might be explained by the local increase in the excitability of the dorsolateral prefrontal cortex.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Parrao-Diaz T.
        • Chana-Cuevas P.
        • Juri-Claverias C.
        • Kunstmann C.
        • Tapia-Nunez J.
        Evaluation of cognitive impairment in a population of patients with Parkinson's disease by means of the mini mental Parkinson test.
        Rev Neurol. 2005; 40: 339-344
        • Lees A.J.
        • Smith E.
        Cognitive deficits in the early stages of Parkinson's disease.
        Brain. 1983; 106: 257-270
        • Taylor A.E.
        • Saint-Cyr J.A.
        • Lang A.E.
        Frontal lobe dysfunction in Parkinson's disease. The cortical focus of neostriatal outflow.
        Brain. 1986; 109: 845-883
        • Lewis S.J.
        • Slabosz A.
        • Robbins T.W.
        • Barker R.A.
        • Owen A.M.
        Dopaminergic basis for deficits in working memory but not attentional set-shifting in Parkinson's disease.
        Neuropsychologia. 2005; 43: 823-832
        • Kulisevsky J.
        Role of dopamine in learning and memory: implications for the treatment of cognitive dysfunction in patients with Parkinson's disease.
        Drugs Aging. 2000; 16: 365-379
        • Marini P.
        • Ramat S.
        • Ginestroni A.
        • Paganini M.
        Deficit of short-term memory in newly diagnosed untreated parkinsonian patients: reversal after l-dopa therapy.
        Neurol Sci. 2003; 24: 184-185
        • Boggio P.S.
        • Fregni F.
        • Bermpohl F.
        • Mansur C.G.
        • Rosa M.
        • Rumi D.O.
        • et al.
        Effect of repetitive TMS and fluoxetine on cognitive function in patients with Parkinson's disease and concurrent depression.
        Mov Disord. 2005; 20: 1178-1184
        • Nitsche M.A.
        • Liebetanz D.
        • Lang N.
        • Antal A.
        • Tergau F.
        • Paulus W.
        Safety criteria for transcranial direct current stimulation (tDCS) in humans.
        Clin Neurophysiol. 2003; 114 ([author reply 2–3]): 2220-2222
        • Lang N.
        • Nitsche M.A.
        • Paulus W.
        • Rothwell J.C.
        • Lemon R.N.
        Effects of transcranial direct current stimulation over the human motor cortex on corticospinal and transcallosal excitability.
        Exp Brain Res. 2004; 156: 439-443
        • Nitsche M.A.
        • Paulus W.
        Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans.
        Neurology. 2001; 57: 1899-1901
        • Nitsche M.A.
        • Grundey J.
        • Liebetanz D.
        • Lang N.
        • Tergau F.
        • Paulus W.
        Catecholaminergic consolidation of motor cortical neuroplasticity in humans.
        Cereb Cortex. 2004; 14: 1240-1245
        • Antal A.
        • Kincses T.Z.
        • Nitsche M.A.
        • Bartfai O.
        • Paulus W.
        Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence.
        Invest Ophthalmol Vis Sci. 2004; 45: 702-707
        • Gandiga P.
        • Hummel F.
        • Cohen L.
        Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation.
        Clin Neurophysiol. 2006; 117: 845-850
        • Nitsche M.A.
        • Seeber A.
        • Frommann K.
        • Klein C.C.
        • Rochford C.
        • Nitsche M.S.
        • et al.
        Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex.
        J Physiol. 2005; 568: 291-303
        • Fregni F.
        • Boggio P.S.
        • Nitsche M.
        • Bermpohl F.
        • Antal A.
        • Feredoes E.
        • et al.
        Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory.
        Exp Brain Res. 2005; 166: 23-30
        • Marshall L.
        • Molle M.
        • Siebner H.R.
        • Born J.
        Bifrontal transcranial direct current stimulation slows reaction time in a working memory task.
        BMC Neurosci. 2005; 6: 23
        • Hughes A.J.
        • Daniel S.E.
        • Kilford L.
        • Lees A.J.
        Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases.
        J Neurol Neurosurg Psychiatry. 1992; 55: 181-184
        • Almeida O.P.
        Mini mental state examination and the diagnosis of dementia in Brazil.
        Arq Neuropsiquiatr. 1998; 56: 605-612
        • Gerloff C.
        • Corwell B.
        • Chen R.
        • Hallett M.
        • Cohen L.G.
        Stimulation over the human supplementary motor area interferes with the organization of future elements in complex motor sequences.
        Brain. 1997; 120: 1587-1602
        • Rossi S.
        • Cappa S.F.
        • Babiloni C.
        • Pasqualetti P.
        • Miniussi C.
        • Carducci F.
        • et al.
        Prefrontal [correction of prefontal] cortex in long-term memory: an “interference” approach using magnetic stimulation.
        Nat Neurosci. 2001; 4: 948-952
        • Herwig U.
        • Satrapi P.
        • Schonfeldt-Lecuona C.
        Using the international 10–20 EEG system for positioning of transcranial magnetic stimulation.
        Brain Topogr. 2003; 16: 95-99
        • D'Esposito M.
        • Postle B.R.
        • Jonides J.
        • Smith E.E.
        The neural substrate and temporal dynamics of interference effects in working memory as revealed by event-related functional MRI.
        Proc Natl Acad Sci U S A. 1999; 96: 7514-7519
        • Smith E.E.
        • Jonides J.
        Storage and executive processes in the frontal lobes.
        Science. 1999; 283: 1657-1661
        • Mottaghy F.M.
        • Krause B.J.
        • Kemna L.J.
        • Topper R.
        • Tellmann L.
        • Beu M.
        • et al.
        Modulation of the neuronal circuitry subserving working memory in healthy human subjects by repetitive transcranial magnetic stimulation.
        Neurosci Lett. 2000; 280: 167-170
        • Martis B.
        • Alam D.
        • Dowd S.M.
        • Hill S.K.
        • Sharma R.P.
        • Rosen C.
        • et al.
        Neurocognitive effects of repetitive transcranial magnetic stimulation in severe major depression.
        Clin Neurophysiol. 2003; 114: 1125-1132
        • Moser D.J.
        • Jorge R.E.
        • Manes F.
        • Paradiso S.
        • Benjamin M.L.
        • Robinson R.G.
        Improved executive functioning following repetitive transcranial magnetic stimulation.
        Neurology. 2002; 58: 1288-1290
        • Padberg F.
        • Zwanzger P.
        • Thoma H.
        • Kathmann N.
        • Haag C.
        • Greenberg B.D.
        • et al.
        Repetitive transcranial magnetic stimulation (rTMS) in pharmacotherapy-refractory major depression: comparative study of fast, slow and sham rTMS.
        Psychiatry Res. 1999; 88: 163-171
        • Cools R.
        • Stefanova E.
        • Barker R.A.
        • Robbins T.W.
        • Owen A.M.
        Dopaminergic modulation of high-level cognition in Parkinson's disease: the role of the prefrontal cortex revealed by PET.
        Brain. 2002; 125: 584-594
        • Kikuchi A.
        • Takeda A.
        • Kimpara T.
        • Nakagawa M.
        • Kawashima R.
        • Sugiura M.
        • et al.
        Hypoperfusion in the supplementary motor area, dorsolateral prefrontal cortex and insular cortex in Parkinson's disease.
        J Neurol Sci. 2001; 193: 29-36
        • Fregni F.
        • Boggio P.S.
        • Mansur C.G.
        • Wagner T.
        • Ferreira M.J.
        • Lima M.C.
        • et al.
        Transcranial direct current stimulation of the unaffected hemisphere in stroke patients.
        NeuroReport. 2005; 16: 1551-1555
        • Mull B.R.
        • Seyal M.
        Transcranial magnetic stimulation of left prefrontal cortex impairs working memory.
        Clin Neurophysiol. 2001; 112: 1672-1675
        • Purpura D.P.
        • McMurtry J.G.
        Intracellular activities and evoked potential changes during polarization of motor cortex.
        J Neurophysiol. 1965; 28: 166-185
      1. Fregni F, Marcolin MA, Myczkowski ML, Amiaz R, Hasey G, Rumi D, et al. Predictors of antidepressant response in clinical trials of transcranial magnetic stimulation. Int J Neuropsychopharmacol in press, doi:10.1017/S1461145705006280.

        • Strafella A.P.
        • Paus T.
        • Barrett J.
        • Dagher A.
        Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus.
        J Neurosci. 2001; 21: RC157
        • Keck M.E.
        • Sillaber I.
        • Ebner K.
        • Welt T.
        • Toschi N.
        • Kaehler S.T.
        • et al.
        Acute transcranial magnetic stimulation of frontal brain regions selectively modulates the release of vasopressin, biogenic amines and amino acids in the rat brain.
        Eur J Neurosci. 2000; 12: 3713-3720
        • Aalto S.
        • Bruck A.
        • Laine M.
        • Nagren K.
        • Rinne J.O.
        Frontal and temporal dopamine release during working memory and attention tasks in healthy humans: a positron emission tomography study using the high-affinity dopamine D2 receptor ligand [11C]FLB 457.
        J Neurosci. 2005; 25: 2471-2477
        • Alexander G.E.
        • DeLong M.R.
        • Strick P.L.
        Parallel organization of functionally segregated circuits linking basal ganglia and cortex.
        Annu Rev Neurosci. 1986; 9: 357-381
        • Bindman L.J.
        • Lippold O.C.
        • Redfearn J.W.
        The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects.
        J Physiol. 1964; 172: 369-382
        • Nitsche M.A.
        • Liebetanz D.
        • Antal A.
        • Lang N.
        • Tergau F.
        • Paulus W.
        Modulation of cortical excitability by weak direct current stimulation-technical, safety and functional aspects.
        Suppl Clin Neurophysiol. 2003; 56: 255-276
        • Priori A.
        Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability.
        Clin Neurophysiol. 2003; 114: 589-595
        • Tipper C.M.
        • Cairo T.A.
        • Woodward T.S.
        • Phillips A.G.
        • Liddle P.F.
        • Ngan E.T.
        Processing efficiency of a verbal working memory system is modulated by amphetamine: an fMRI investigation.
        Psychopharmacology (Berl). 2005; 180: 634-643
        • Seamans J.K.
        • Yang C.R.
        The principal features and mechanisms of dopamine modulation in the prefrontal cortex.
        Prog Neurobiol. 2004; 74: 1-58
        • Iyer M.B.
        • Mattu U.
        • Grafman J.
        • Lomarev M.
        • Sato S.
        • Wassermann E.M.
        Safety and cognitive effect of frontal DC brain polarization in healthy individuals.
        Neurology. 2005; 64: 872-875