Advertisement

Insulin resistance, inflammation, and cognition in Alzheimer's Disease: Lessons for multiple sclerosis

      Abstract

      Insulin resistance (reduced ability of insulin to stimulate glucose utilization) is common in North American and Europe, where as many as one third of all older adults suffer from prodromal or clinical type 2 diabetes mellitus. It has long been known that insulin-resistant conditions adversely affect general health status. A growing body of findings suggests that insulin contributes to normal brain functioning and that peripheral insulin abnormalities increase the risk for memory loss and neurodegenerative disorders such as Alzheimer's disease. Potential mechanisms for these effects include insulin's role in cerebral glucose metabolism, peptide regulation, modulation of neurotransmitter levels, and modulation of many aspects of the inflammatory network. An intriguing question is whether insulin abnormalities also influence the pathophysiology of multiple sclerosis (MS), an autoimmune disorder characterized by elevated inflammatory biomarkers, central nervous system white matter lesions, axonal degeneration, and cognitive impairment. MS increases the risk for type 1 diabetes mellitus. Furthermore, the lack of association between MS and type 2 diabetes may suggest that insulin resistance affects patients with MS and the general population at the same alarming rate. Therefore, insulin resistance may exacerbate phenomena that are common to MS and insulin-resistant conditions, such as cognitive impairments and elevated inflammatory responses. Interestingly, the thiazolidinediones, which are used to treat patients with type 2 diabetes, have been proposed as potential therapeutic agents for both Alzheimer's disease and MS. The agents improve insulin sensitivity, reduce hyperinsulinemia, and exert anti-inflammatory actions. Ongoing studies will determine whether thiazolidinediones improve cognitive functioning for patients with type 2 diabetes or Alzheimer's disease. Future studies are needed to examine the effects of thiazolidinediones on patients with MS.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Behi M.E.
        • Dubucquoi S.
        • Lefranc D.
        • Zephir H.
        • De Seze J.
        • Vermersch P.
        • et al.
        New insights into cell responses involved in experimental autoimmune encephalomyelitis and multiple sclerosis.
        Immunol Lett. 2005; 96: 11-26
        • Schmidt S.
        • Moric E.
        • Schmidt M.
        • Sastre M.
        • Feinstein D.L.
        • Heneka M.T.
        Anti-inflammatory and antiproliferative actions of PPAR-gamma agonists on T lymphocytes derived from MS patients.
        J Leukoc Biol. 2004; 75: 478-485
        • Amato M.P.
        • Ponziani G.
        • Siracusa G.
        • Sorbi S.
        Cognitive dysfunction in early-onset multiple sclerosis: a reappraisal after 10 years.
        Arch Neurol. 2001; 58: 1602-1606
        • Bobholz J.A.
        • Rao S.M.
        Cognitive dysfunction in multiple sclerosis: a review of recent developments.
        Curr Opin Neurol. 2003; 16: 283-288
        • Marrosu M.G.
        • Cocco E.
        • Lai M.
        • Spinicci G.
        • Pischedda M.P.
        • Contu P.
        Patients with multiple sclerosis and risk of type 1 diabetes mellitus in Sardinia, Italy: a cohort study.
        Lancet. 2002; 359: 1461-1465
        • Edwards L.J.
        • Constantinescu C.S.
        A prospective study of conditions associated with multiple sclerosis in a cohort of 658 consecutive outpatients attending a multiple sclerosis clinic.
        Mult Scler. 2004; 10: 575-581
        • Buzzetti R.
        • Pozzilli P.
        • Di Mario U.
        • Ballerini C.
        • Massacesi L.
        Multiple sclerosis and type I diabetes.
        Diabetologia. 2002; 45: 1735-1736
        • Harris M.I.
        • Flegal K.M.
        • Cowie C.C.
        • Eberhardt M.S.
        • Goldstein D.E.
        • Little R.R.
        • et al.
        Prevalence of diabetes, impaired fasting glucose, and impaired glucose tolerance in U.S. adults. The Third National Health and Nutrition Examination Survey, 1988–1994.
        Diabetes Care. 1998; 21: 518-524
        • Strachan M.W.
        • Deary I.J.
        • Ewing F.M.
        • Frier B.M.
        Is type II diabetes associated with an increased risk of cognitive dysfunction? A critical review of published studies.
        Diabetes Care. 1997; 20: 438-445
        • Newcomer J.W.
        • Selke G.
        • Melson A.K.
        • Hershey T.
        • Craft S.
        • Richards K.
        • et al.
        Decreased memory performance in healthy humans induced by stress-level cortisol treatment.
        Arch Gen Psychiatry. 1999; 56: 527-533
        • Crayton H.
        • Heyman R.A.
        • Rossman H.S.
        A multimodal approach to managing the symptoms of multiple sclerosis.
        Neurology. 2004; 63: S12-S18
        • Sadovnick A.D.
        • Ebers G.C.
        • Dyment D.A.
        • Risch N.J.
        Evidence for genetic basis of multiple sclerosis. The Canadian Collaborative Study Group.
        Lancet. 1996; 347: 1728-1730
        • Marrie R.A.
        Environmental risk factors in multiple sclerosis aetiology.
        Lancet Neurol. 2004; 3: 709-718
        • Sadovnick A.D.
        • Armstrong H.
        • Rice G.P.
        • Bulman D.
        • Hashimoto L.
        • Paty D.W.
        • et al.
        A population-based study of multiple sclerosis in twins: update.
        Ann Neurol. 1993; 33: 281-285
        • Ebers G.C.
        Natural history of primary progressive multiple sclerosis.
        Mult Scler. 2004; 10 ([discussion S-5]): S8-S13
        • Schwartz M.
        • Kipnis J.
        Protective autoimmunity and neuroprotection in inflammatory and noninflammatory neurodegenerative diseases.
        J Neurol Sci. 2005; 233: 163-166
        • Hartung H.P.
        • Bar-Or A.
        • Zoukos Y.
        What do we know about the mechanism of action of disease-modifying treatments in MS?.
        J Neurol. 2004; 251: v12-v29
        • Sospedra M.
        • Martin R.
        Immunology of multiple sclerosis.
        Annu Rev Immunol. 2005; 23: 683-747
        • Feinstein D.L.
        • Galea E.
        • Gavrilyuk V.
        • Brosnan C.F.
        • Whitacre C.C.
        • Dumitrescu-Ozimek L.
        • et al.
        Peroxisome proliferator-activated receptor-gamma agonists prevent experimental autoimmune encephalomyelitis.
        Ann Neurol. 2002; 51: 694-702
        • Hohlfeld R.
        Biotechnological agents for the immunotherapy of multiple sclerosis. Principles, problems and perspectives.
        Brain. 1997; 120: 865-916
        • Haase C.G.
        • Tinnefeld M.
        • Daum I.
        • Ganz R.E.
        • Haupts M.
        • Faustmann P.M.
        Cognitive, but not mood dysfunction develops in multiple sclerosis during 7 years of follow-up.
        Eur Neurol. 2004; 52: 92-95
        • Deloire M.S.
        • Salort E.
        • Bonnet M.
        • Arimone Y.
        • Boudineau M.
        • Amieva H.
        • et al.
        Cognitive impairment as marker of diffuse brain abnormalities in early relapsing remitting multiple sclerosis.
        J Neurol Neurosurg Psychiatry. 2005; 76: 519-526
        • D'Intino G.
        • Paradisi M.
        • Fernandez M.
        • Giuliani A.
        • Aloe L.
        • Giardino L.
        • et al.
        Cognitive deficit associated with cholinergic and nerve growth factor down-regulation in experimental allergic encephalomyelitis in rats.
        Proc Natl Acad Sci U S A. 2005; 102: 3070-3075
        • Doraiswamy P.M.
        • Rao S.M.
        Treating cognitive deficits in multiple sclerosis: are we there yet?.
        Neurology. 2004; 63: 1552-1553
        • Krupp L.B.
        • Christodoulou C.
        • Melville P.
        • Scherl W.F.
        • MacAllister W.S.
        • Elkins L.E.
        Donepezil improved memory in multiple sclerosis in a randomized clinical trial.
        Neurology. 2004; 63: 1579-1585
        • Parry A.M.
        • Scott R.B.
        • Palace J.
        • Smith S.
        • Matthews P.M.
        Potentially adaptive functional changes in cognitive processing for patients with multiple sclerosis and their acute modulation by rivastigmine.
        Brain. 2003; 126: 2750-2760
        • Amato M.P.
        Donepezil for memory impairment in multiple sclerosis.
        Lancet Neurol. 2005; 4: 72-73
        • Dorman J.S.
        • Steenkiste A.R.
        • Burke J.P.
        • Songini M.
        Type 1 diabetes and multiple sclerosis: together at last.
        Diabetes Care. 2003; 26: 3192-3193
        • Ramlo-Halsted B.A.
        • Edelman S.V.
        The natural history of type 2 diabetes. Implications for clinical practice.
        Prim Care. 1999; 26: 771-789
      1. Prevalence of diabetes and impaired fasting glucose in adults—United States, 1999–2000.
        MMWR Morb Mortal Wkly Rep. 2003; 52: 833-837f
        • Thomas M.C.
        • Walker M.K.
        • Emberson J.R.
        • Thomson A.G.
        • Lawlor D.A.
        • Ebrahim S.
        • et al.
        Prevalence of undiagnosed type 2 diabetes and impaired fasting glucose in older British men and women.
        Diabet Med. 2005; 22: 789-793
        • Meneilly G.S.
        • Tessier D.
        Diabetes in elderly adults.
        J Gerontol A Biol Sci Med Sci. 2001; 56: M5-M13
        • Gregg E.W.
        • Yaffe K.
        • Cauley J.A.
        • Rolka D.B.
        • Blackwell T.L.
        • Narayan K.M.
        • et al.
        Is diabetes associated with cognitive impairment and cognitive decline among older women? Study of Osteoporotic Fractures Research Group.
        Arch Intern Med. 2000; 160: 174-180
        • Meneilly G.S.
        • Cheung E.
        • Tessier D.
        • Yakura C.
        • Tuokko H.
        The effect of improved glycemic control on cognitive functions in the elderly patient with diabetes.
        J Gerontol. 1993; 48: M117-M121
        • Ryan C.M.
        • Geckle M.
        Why is learning and memory dysfunction in type 2 diabetes limited to older adults?.
        Diabetes Metab Res Rev. 2000; 16: 308-315
        • Vanhanen M.
        • Kuusisto J.
        • Koivisto K.
        • Mykkanen L.
        • Helkala E.L.
        • Hanninen T.
        • et al.
        Type-2 diabetes and cognitive function in a non-demented population.
        Acta Neurol Scand. 1999; 100: 97-101
        • Reaven G.M.
        • Thompson L.W.
        • Nahum D.
        • Haskins E.
        Relationship between hyperglycemia and cognitive function in older NIDDM patients.
        Diabetes Care. 1990; 13: 16-21
        • Naor M.
        • Steingruber H.J.
        • Westhoff K.
        • Schottenfeld-Naor Y.
        • Gries A.F.
        Cognitive function in elderly non-insulin-dependent diabetic patients before and after inpatient treatment for metabolic control.
        J Diabetes Complications. 1997; 11: 40-46
        • Gradman T.J.
        • Laws A.
        • Thompson L.W.
        • Reaven G.M.
        Verbal learning and/or memory improves with glycemic control in older subjects with non-insulin-dependent diabetes mellitus.
        J Am Geriatr Soc. 1993; 41: 1305-1312
        • Ho L.
        • Qin W.
        • Pompl P.N.
        • Xiang Z.
        • Wang J.
        • Zhao Z.
        • et al.
        Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer's disease.
        FASEB J. 2004; 18: 902-904
        • Luchsinger J.A.
        • Tang M.X.
        • Shea S.
        • Mayeux R.
        Hyperinsulinemia and risk of Alzheimer disease.
        Neurology. 2004; 63: 1187-1192
        • Vanhanen M.
        • Koivisto K.
        • Kuusisto J.
        • Mykkanen L.
        • Helkala E.L.
        • Hanninen T.
        • et al.
        Cognitive function in an elderly population with persistent impaired glucose tolerance.
        Diabetes Care. 1998; 21: 398-402
        • Messier C.
        • Desrochers A.
        • Gagnon M.
        Effect of glucose, glucose regulation, and word imagery value on human memory.
        Behav Neurosci. 1999; 113: 431-438
        • Sadovnick A.D.
        • Ebers G.C.
        • Wilson R.W.
        • Paty D.W.
        Life expectancy in patients attending multiple sclerosis clinics.
        Neurology. 1992; 42: 991-994
        • Pozzilli C.
        • Marinelli F.
        • Romano S.
        • Bagnato F.
        Corticosteroids treatment.
        J Neurol Sci. 2004; 223: 47-51
        • Zivadinov R.
        Steroids and brain atrophy in multiple sclerosis.
        J Neurol Sci. 2005; 233: 73-81
        • Pagano G.
        • Cavallo-Perin P.
        • Cassader M.
        • Bruno A.
        • Ozzello A.
        • Masciola P.
        • et al.
        An in vivo and in vitro study of the mechanism of prednisone-induced insulin resistance in healthy subjects.
        J Clin Invest. 1983; 72: 1814-1820
        • Oliveri R.L.
        • Sibilia G.
        • Valentino P.
        • Russo C.
        • Romeo N.
        • Quattrone A.
        Pulsed methylprednisolone induces a reversible impairment of memory in patients with relapsing–remitting multiple sclerosis.
        Acta Neurol Scand. 1998; 97: 366-369
        • Brunner R.
        • Schaefer D.
        • Hess K.
        • Parzer P.
        • Resch F.
        • Schwab S.
        Effect of corticosteroids on short-term and long-term memory.
        Neurology. 2005; 64: 335-337
        • Schulingkamp R.J.
        • Pagano T.C.
        • Hung D.
        • Raffa R.B.
        Insulin receptors and insulin action in the brain: review and clinical implications.
        Neurosci Biobehav Rev. 2000; 24: 855-872
        • Watson G.S.
        • Craft S.
        Modulation of memory by insulin and glucose: neuropsychological observations in Alzheimer's disease.
        Eur J Pharmacol. 2004; 490: 97-113
        • Schwartz M.W.
        • Porte Jr., D.
        Diabetes, obesity, and the brain.
        Science. 2005; 307: 375-379
        • Craft S.
        • Watson G.S.
        Insulin and neurodegenerative disease: shared and specific mechanisms.
        Lancet Neurol. 2004; 3: 169-178
        • Baura G.D.
        • Foster D.M.
        • Porte Jr., D.
        • Kahn S.E.
        • Bergman R.N.
        • Cobelli C.
        • et al.
        Saturable transport of insulin from plasma into the central nervous system of dogs in vivo. A mechanism for regulated insulin delivery to the brain.
        J Clin Invest. 1993; 92: 1824-1830
        • Banks W.A.
        • Jaspan J.B.
        • Kastin A.J.
        Selective, physiological transport of insulin across the blood–brain barrier: novel demonstration by species-specific radioimmunoassays.
        Peptides. 1997; 18: 1257-1262
        • Banks W.A.
        • Jaspan J.B.
        • Huang W.
        • Kastin A.J.
        Transport of insulin across the blood–brain barrier: saturability at euglycemic doses of insulin.
        Peptides. 1997; 18: 1423-1429
        • Watson G.S.
        • Peskind E.R.
        • Asthana S.
        • Purganan K.
        • Wait C.
        • Chapman D.
        • et al.
        Insulin increases CSF Abeta42 levels in normal older adults.
        Neurology. 2003; 60: 1899-1903
        • Wallum B.J.
        • Taborsky Jr., G.J.
        • Porte Jr., D.
        • Figlewicz D.P.
        • Jacobson L.
        • Beard J.C.
        • et al.
        Cerebrospinal fluid insulin levels increase during intravenous insulin infusions in man.
        J Clin Endocrinol Metab. 1987; 64: 190-194
        • Kaiyala K.J.
        • Prigeon R.L.
        • Kahn S.E.
        • Woods S.C.
        • Schwartz M.W.
        Obesity induced by a high-fat diet is associated with reduced brain insulin transport in dogs.
        Diabetes. 2000; 49: 1525-1533
        • Schwartz M.W.
        • Figlewicz D.F.
        • Kahn S.E.
        • Baskin D.G.
        • Greenwood M.R.
        • Porte Jr, D.
        Insulin binding to brain capillaries is reduced in genetically obese, hyperinsulinemic Zucker rats.
        Peptides. 1990; 11: 467-472
        • Rulifson E.J.
        • Kim S.K.
        • Nusse R.
        Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes.
        Science. 2002; 296: 1118-1120
        • Devaskar S.U.
        • Giddings S.J.
        • Rajakumar P.A.
        • Carnaghi L.R.
        • Menon R.K.
        • Zahm D.S.
        Insulin gene expression and insulin synthesis in mammalian neuronal cells.
        J Biol Chem. 1994; 269: 8445-8454
        • Schechter R.
        • Holtzclaw L.
        • Sadiq F.
        • Kahn A.
        • Devaskar S.
        Insulin synthesis by isolated rabbit neurons.
        Endocrinology. 1988; 123: 505-513
        • Singh B.S.
        • Rajakumar P.A.
        • Eves E.M.
        • Rosner M.R.
        • Wainer B.H.
        • Devaskar S.U.
        Insulin gene expression in immortalized rat hippocampal and pheochromocytoma-12 cell lines.
        Regul Pept. 1997; 69: 7-14
        • Havrankova J.
        • Schmechel D.
        • Roth J.
        • Brownstein M.
        Identification of insulin in rat brain.
        Proc Natl Acad Sci U S A. 1978; 75: 5737-5741
        • Havrankova J.
        • Roth J.
        • Brownstein M.
        Insulin receptors are widely distributed in the central nervous system of the rat.
        Nature. 1978; 272: 827-829
        • Unger J.W.
        • Livingston J.N.
        • Moss A.M.
        Insulin receptors in the central nervous system: localization, signalling mechanisms and functional aspects.
        Prog Neurobiol. 1991; 36: 343-362
        • Baskin D.G.
        • Figlewicz D.P.
        • Woods S.C.
        • Porte Jr, D.
        • Dorsa D.M.
        Insulin in the brain.
        Annu Rev Physiol. 1987; 49: 335-347
        • Squire L.R.
        Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans.
        Psychol Rev. 1992; 99: 195-231
        • Lang A.E.
        • Lozano A.M.
        Parkinson's disease. First of two parts.
        N Engl J Med. 1998; 339: 1044-1053
        • Park C.R.
        • Seeley R.J.
        • Craft S.
        • Woods S.C.
        Intracerebroventricular insulin enhances memory in a passive-avoidance task.
        Physiol Behav. 2000; 68: 509-514
        • Craft S.
        • Asthana S.
        • Cook D.G.
        • Baker L.D.
        • Cherrier M.
        • Purganan K.
        • et al.
        Insulin dose–response effects on memory and plasma amyloid precursor protein in Alzheimer's disease: interactions with apolipoprotein E genotype.
        Psychoneuroendocrinology. 2003; 28: 809-822
        • Craft S.
        • Asthana S.
        • Newcomer J.W.
        • Wilkinson C.W.
        • Matos I.T.
        • Baker L.D.
        • et al.
        Enhancement of memory in Alzheimer disease with insulin and somatostatin, but not glucose.
        Arch Gen Psychiatry. 1999; 56: 1135-1140
        • Craft S.
        • Newcomer J.
        • Kanne S.
        • Dagogo-Jack S.
        • Cryer P.
        • Sheline Y.
        • et al.
        Memory improvement following induced hyperinsulinemia in Alzheimer's disease.
        Neurobiol Aging. 1996; 17: 123-130
        • Born J.
        • Lange T.
        • Kern W.
        • McGregor G.P.
        • Bickel U.
        • Fehm H.L.
        Sniffing neuropeptides: a transnasal approach to the human brain.
        Nat Neurosci. 2002; 5: 514-516
        • Reger M.A.
        • Watson G.S.
        • Frey II, W.H.
        • Baker L.D.
        • Cholerton B.
        • Keeling M.L.
        • et al.
        Effects of intranasal insulin on cognition in memory-impaired older adults: modulation by APOE genotype.
        Neurobiol Aging. 2006; 27: 451-458
        • Thorne R.G.
        • Pronk G.J.
        • Padmanabhan V.
        • Frey II, W.H.
        Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration.
        Neuroscience. 2004; 127: 481-496
        • Kern W.
        • Born J.
        • Schreiber H.
        • Fehm H.L.
        Central nervous system effects of intranasally administered insulin during euglycemia in men.
        Diabetes. 1999; 48: 557-563
        • Benedict C.
        • Hallschmid M.
        • Hatke A.
        • Schultes B.
        • Fehm H.L.
        • Born J.
        • et al.
        Intranasal insulin improves memory in humans.
        Psychoneuroendocrinology. 2004; 29: 1326-1334
        • Watson G.S.
        • Craft S.
        The role of insulin resistance in the pathogenesis of Alzheimer's disease: implications for treatment.
        CNS Drugs. 2003; 17: 27-45
        • Zhao W.
        • Chen H.
        • Xu H.
        • Moore E.
        • Meiri N.
        • Quon M.J.
        • et al.
        Brain insulin receptors and spatial memory. Correlated changes in gene expression, tyrosine phosphorylation, and signaling molecules in the hippocampus of water maze trained rats.
        J Biol Chem. 1999; 274: 34893-34902
        • Skeberdis V.A.
        • Lan J.
        • Zheng X.
        • Zukin R.S.
        • Bennett M.V.
        Insulin promotes rapid delivery of N-methyl-d-aspartate receptors to the cell surface by exocytosis.
        Proc Natl Acad Sci U S A. 2001; 98: 3561-3566
        • Byrne J.H.
        Learning and memory: basic mechanisms.
        in: Squire L.R. Bloom F.E. McConnell S.K. Roberts J.L. Spitzer N.C. Zigmond M.J. Fundamental neuroscience. Academic Press, San Diego (CA)2003: 1276-1298
        • Di Luca M.
        • Ruts L.
        • Gardoni F.
        • Cattabeni F.
        • Biessels G.J.
        • Gispen W.H.
        NMDA receptor subunits are modified transcriptionally and post-translationally in the brain of streptozotocin-diabetic rats.
        Diabetologia. 1999; 42: 693-701
        • Apelt J.
        • Mehlhorn G.
        • Schliebs R.
        Insulin-sensitive GLUT4 glucose transporters are colocalized with GLUT3-expressing cells and demonstrate a chemically distinct neuron-specific localization in rat brain.
        J Neurosci Res. 1999; 57: 693-705
        • Reagan L.P.
        • Gorovits N.
        • Hoskin E.K.
        • Alves S.E.
        • Katz E.B.
        • Grillo C.A.
        • et al.
        Localization and regulation of GLUTx1 glucose transporter in the hippocampus of streptozotocin diabetic rats.
        Proc Natl Acad Sci U S A. 2001; 98: 2820-2825
        • Bingham E.M.
        • Hopkins D.
        • Smith D.
        • Pernet A.
        • Hallett W.
        • Reed L.
        • et al.
        The role of insulin in human brain glucose metabolism: an 18fluoro-deoxyglucose positron emission tomography study.
        Diabetes. 2002; 51: 3384-3390
        • Blanchard J.G.
        • Duncan P.M.
        Effect of combinations of insulin, glucose and scopolamine on radial arm maze performance.
        Pharmacol Biochem Behav. 1997; 58: 209-214
        • Figlewicz D.P.
        • Bentson K.
        • Ocrant I.
        The effect of insulin on norepinephrine uptake by PC12 cells.
        Brain Res Bull. 1993; 32: 425-431
        • Figlewicz D.P.
        • Szot P.
        • Israel P.A.
        • Payne C.
        • Dorsa D.M.
        Insulin reduces norepinephrine transporter mRNA in vivo in rat locus coeruleus.
        Brain Res. 1993; 602: 161-164
        • Watson G.S.
        • Bernhardt T.
        • Reger M.A.
        • Cholerton B.A.
        • Baker L.D.
        • Peskind E.R.
        • et al.
        Insulin effects on CSF norepinephrine and cognition in Alzheimer's disease.
        Neurobiol Aging. 2006; 27: 38-41
        • Peila R.
        • Rodriguez B.L.
        • Launer L.J.
        Type 2 diabetes, APOE gene, and the risk for dementia and related pathologies: the Honolulu–Asia Aging Study.
        Diabetes. 2002; 51: 1256-1262
        • Leibson C.L.
        • Rocca W.A.
        • Hanson V.A.
        • Cha R.
        • Kokmen E.
        • O'Brien P.C.
        • et al.
        The risk of dementia among persons with diabetes mellitus: a population-based cohort study.
        Ann N Y Acad Sci. 1997; 826: 422-427
        • Ott A.
        • Stolk R.P.
        • van Harskamp F.
        • Pols H.A.
        • Hofman A.
        • Breteler M.M.
        Diabetes mellitus and the risk of dementia: the Rotterdam Study.
        Neurology. 1999; 53: 1937-1942
        • Razay G.
        • Wilcock G.K.
        Hyperinsulinaemia and Alzheimer's disease.
        Age Ageing. 1994; 23: 396-399
        • Craft S.
        • Asthana S.
        • Schellenberg G.
        • Cherrier M.
        • Baker L.D.
        • Newcomer J.
        • et al.
        Insulin metabolism in Alzheimer's disease differs according to apolipoprotein E genotype and gender.
        Neuroendocrinology. 1999; 70: 146-152
        • Messier C.
        Diabetes, Alzheimer's disease and apolipoprotein genotype.
        Exp Gerontol. 2003; 38: 941-946
        • Hoyer S.
        The aging brain. Changes in the neuronal insulin/insulin receptor signal transduction cascade trigger late-onset sporadic Alzheimer disease (SAD). A mini-review.
        J Neural Transm. 2002; 109: 991-1002
        • Frolich L.
        • Blum-Degen D.
        • Bernstein H.G.
        • Engelsberger S.
        • Humrich J.
        • Laufer S.
        • et al.
        Brain insulin and insulin receptors in aging and sporadic Alzheimer's disease.
        J Neural Transm. 1998; 105: 423-438
        • Gasparini L.
        • Gouras G.K.
        • Wang R.
        • Gross R.S.
        • Beal M.F.
        • Greengard P.
        • et al.
        Stimulation of beta-amyloid precursor protein trafficking by insulin reduces intraneuronal beta-amyloid and requires mitogen-activated protein kinase signaling.
        J Neurosci. 2001; 21: 2561-2570
        • Zhao L.
        • Teter B.
        • Morihara T.
        • Lim G.P.
        • Ambegaokar S.S.
        • Ubeda O.J.
        • et al.
        Insulin-degrading enzyme as a downstream target of insulin receptor signaling cascade: implications for Alzheimer's disease intervention.
        J Neurosci. 2004; 24: 11120-11126
        • Authier F.
        • Posner B.I.
        • Bergeron J.J.
        Insulin-degrading enzyme.
        Clin Invest Med. 1996; 19: 149-160
        • Sudoh S.
        • Frosch M.P.
        • Wolf B.A.
        Differential effects of proteases involved in intracellular degradation of amyloid beta-protein between detergent-soluble and -insoluble pools in CHO-695 cells.
        Biochemistry (Mosc). 2002; 41: 1091-1099
        • Perez A.
        • Morelli L.
        • Cresto J.C.
        • Castano E.M.
        Degradation of soluble amyloid beta-peptides 1–40, 1–42, and the Dutch variant 1–40Q by insulin degrading enzyme from Alzheimer disease and control brains.
        Neurochem Res. 2000; 25: 247-255
        • Farris W.
        • Mansourian S.
        • Chang Y.
        • Lindsley L.
        • Eckman E.A.
        • Frosch M.P.
        • et al.
        Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo.
        Proc Natl Acad Sci U S A. 2003; 100: 4162-4167
        • Cook D.G.
        • Leverenz J.B.
        • McMillan P.J.
        • Kulstad J.J.
        • Ericksen S.
        • Roth R.A.
        • et al.
        Reduced hippocampal insulin-degrading enzyme in late-onset Alzheimer's disease is associated with the apolipoprotein E-epsilon4 allele.
        Am J Pathol. 2003; 162: 313-319
        • Myers A.
        • Holmans P.
        • Marshall H.
        • Kwon J.
        • Meyer D.
        • Ramic D.
        • et al.
        Susceptibility locus for Alzheimer's disease on chromosome 10.
        Science. 2000; 290: 2304-2305
        • Ertekin-Taner N.
        • Graff-Radford N.
        • Younkin L.H.
        • Eckman C.
        • Baker M.
        • Adamson J.
        • et al.
        Linkage of plasma Abeta42 to a quantitative locus on chromosome 10 in late-onset Alzheimer's disease pedigrees.
        Science. 2000; 290: 2303-2304
        • Bertram L.
        • Blacker D.
        • Mullin K.
        • Keeney D.
        • Jones J.
        • Basu S.
        • et al.
        Evidence for genetic linkage of Alzheimer's disease to chromosome 10q.
        Science. 2000; 290: 2302-2303
        • Abraham R.
        • Myers A.
        • Wavrant-DeVrieze F.
        • Hamshere M.L.
        • Thomas H.V.
        • Marshall H.
        • et al.
        Substantial linkage disequilibrium across the insulin-degrading enzyme locus but no association with late-onset Alzheimer's disease.
        Hum Genet. 2001; 109: 646-652
        • Mayeux R.
        • Honig L.S.
        • Tang M.X.
        • Manly J.
        • Stern Y.
        • Schupf N.
        • et al.
        Plasma A[beta]40 and A[beta]42 and Alzheimer's disease: relation to age, mortality, and risk.
        Neurology. 2003; 61: 1185-1190
        • Dandona P.
        Endothelium, inflammation, and diabetes.
        Curr Diab Rep. 2002; 2: 311-315
        • Krogh-Madsen R.
        • Plomgaard P.
        • Keller P.
        • Keller C.
        • Pedersen B.K.
        Insulin stimulates interleukin-6 and tumor necrosis factor-alpha gene expression in human subcutaneous adipose tissue.
        Am J Physiol Endocrinol Metab. 2004; 286: E234-E238
        • Soop M.
        • Duxbury H.
        • Agwunobi A.O.
        • Gibson J.M.
        • Hopkins S.J.
        • Childs C.
        • et al.
        Euglycemic hyperinsulinemia augments the cytokine and endocrine responses to endotoxin in humans.
        Am J Physiol Endocrinol Metab. 2002; 282: E1276-E1285
        • Axelrod L.
        Insulin, prostaglandins, and the pathogenesis of hypertension.
        Diabetes. 1991; 40: 1223-1227
        • Laight D.W.
        • Desai K.M.
        • Gopaul N.K.
        • Anggard E.E.
        • Carrier M.J.
        F2-Isoprostane evidence of oxidant stress in the insulin resistant, obese Zucker rat: effects of vitamin E.
        Eur J Pharmacol. 1999; 377: 89-92
        • Facchini F.S.
        • Hua N.W.
        • Reaven G.M.
        • Stoohs R.A.
        Hyperinsulinemia: the missing link among oxidative stress and age-related diseases?.
        Free Radic Biol Med. 2000; 29: 1302-1306
        • Caballero A.E.
        Endothelial dysfunction, inflammation, and insulin resistance: a focus on subjects at risk for type 2 diabetes.
        Curr Diab Rep. 2004; 4: 237-246
        • Akiyama H.
        • Barger S.
        • Barnum S.
        • Bradt B.
        • Bauer J.
        • Cole G.M.
        • et al.
        Inflammation and Alzheimer's disease.
        Neurobiol Aging. 2000; 21: 383-421
        • Montine T.J.
        • Kaye J.A.
        • Montine K.S.
        • McFarland L.
        • Morrow J.D.
        • Quinn J.F.
        Cerebrospinal fluid abeta42, tau, and f2-isoprostane concentrations in patients with Alzheimer disease, other dementias, and in age-matched controls.
        Arch Pathol Lab Med. 2001; 125: 510-512
        • Cacquevel M.
        • Lebeurrier N.
        • Cheenne S.
        • Vivien D.
        Cytokines in neuroinflammation and Alzheimer's disease.
        Curr Drug Targets. 2004; 5: 529-534
        • Tarkowski E.
        • Blennow K.
        • Wallin A.
        • Tarkowski A.
        Intracerebral production of tumor necrosis factor-alpha, a local neuroprotective agent, in Alzheimer disease and vascular dementia.
        J Clin Immunol. 1999; 19: 223-230
        • Carro E.
        • Trejo J.L.
        • Gomez-Isla T.
        • LeRoith D.
        • Torres-Aleman I.
        Serum insulin-like growth factor I regulates brain amyloid-beta levels.
        Nat Med. 2002; 8: 1390-1397
        • Zhao M.
        • Cribbs D.H.
        • Anderson A.J.
        • Cummings B.J.
        • Su J.H.
        • Wasserman A.J.
        • et al.
        The induction of the TNFalpha death domain signaling pathway in Alzheimer's disease brain.
        Neurochem Res. 2003; 28: 307-318
        • Aggarwal S.
        • Gollapudi S.
        • Gupta S.
        Increased TNF-alpha-induced apoptosis in lymphocytes from aged humans: changes in TNF-alpha receptor expression and activation of caspases.
        J Immunol. 1999; 162: 2154-2161
        • Dzienis-Straczkowska S.
        • Straczkowski M.
        • Szelachowska M.
        • Stepien A.
        • Kowalska I.
        • Kinalska I.
        Soluble tumor necrosis factor-alpha receptors in young obese subjects with normal and impaired glucose tolerance.
        Diabetes Care. 2003; 26: 875-880
        • Bastard J.P.
        • Jardel C.
        • Bruckert E.
        • Vidal H.
        • Hainque B.
        Variations in plasma soluble tumour necrosis factor receptors after diet-induced weight loss in obesity.
        Diabetes Obes Metab. 2000; 2: 323-325
        • Mrak R.E.
        • Griffin W.S.
        Interleukin-1, neuroinflammation, and Alzheimer's disease.
        Neurobiol Aging. 2001; 22: 903-908
        • White J.A.
        • Manelli A.M.
        • Holmberg K.H.
        • Van Eldik L.J.
        • Ladu M.J.
        Differential effects of oligomeric and fibrillar amyloid-beta 1–42 on astrocyte-mediated inflammation.
        Neurobiol Dis. 2005; 18: 459-465
        • Buxbaum J.D.
        • Oishi M.
        • Chen H.I.
        • Pinkas-Kramarski R.
        • Jaffe E.A.
        • Gandy S.E.
        • et al.
        Cholinergic agonists and interleukin 1 regulate processing and secretion of the Alzheimer beta/A4 amyloid protein precursor.
        Proc Natl Acad Sci U S A. 1992; 89: 10075-10078
        • Papassotiropoulos A.
        • Hock C.
        • Nitsch R.M.
        Genetics of interleukin 6: implications for Alzheimer's disease.
        Neurobiol Aging. 2001; 22: 863-871
        • Heneka M.T.
        • Galea E.
        • Gavriluyk V.
        • Dumitrescu-Ozimek L.
        • Daeschner J.
        • O'Banion M.K.
        • et al.
        Noradrenergic depletion potentiates beta-amyloid-induced cortical inflammation: implications for Alzheimer's disease.
        J Neurosci. 2002; 22: 2434-2442
        • Bondareff W.
        • Mountjoy C.Q.
        • Roth M.
        • Rossor M.N.
        • Iversen L.L.
        • Reynolds G.P.
        • et al.
        Neuronal degeneration in locus ceruleus and cortical correlates of Alzheimer disease.
        Alzheimer Dis Assoc Disord. 1987; 1: 256-262
        • Gurnell M.
        PPARgamma and metabolism: insights from the study of human genetic variants.
        Clin Endocrinol (Oxf). 2003; 59: 267-277
        • Ferre P.
        The biology of peroxisome proliferator-activated receptors: relationship with lipid metabolism and insulin sensitivity.
        Diabetes. 2004; 53: S43-S50
        • Craft S.
        • Peskind E.
        • Schwartz M.W.
        • Schellenberg G.D.
        • Raskind M.
        • Porte Jr., D.
        Cerebrospinal fluid and plasma insulin levels in Alzheimer's disease: relationship to severity of dementia and apolipoprotein E genotype.
        Neurology. 1998; 50: 164-168
        • Moreno S.
        • Farioli-Vecchioli S.
        • Ceru M.P.
        Immunolocalization of peroxisome proliferator-activated receptors and retinoid X receptors in the adult rat CNS.
        Neuroscience. 2004; 123: 131-145
        • Heneka M.T.
        • Klockgether T.
        • Feinstein D.L.
        Peroxisome proliferator-activated receptor-gamma ligands reduce neuronal inducible nitric oxide synthase expression and cell death in vivo.
        J Neurosci. 2000; 20: 6862-6867
        • Uryu S.
        • Harada J.
        • Hisamoto M.
        • Oda T.
        Troglitazone inhibits both post-glutamate neurotoxicity and low-potassium-induced apoptosis in cerebellar granule neurons.
        Brain Res. 2002; 924: 229-236
        • Kim E.J.
        • Kwon K.J.
        • Park J.Y.
        • Lee S.H.
        • Moon C.H.
        • Baik E.J.
        Effects of peroxisome proliferator-activated receptor agonists on LPS-induced neuronal death in mixed cortical neurons: associated with iNOS and COX-2.
        Brain Res. 2002; 941: 1-10
        • Bernardo A.
        • Ajmone-Cat M.A.
        • Levi G.
        • Minghetti L.
        15-deoxy-delta12,14-prostaglandin J2 regulates the functional state and the survival of microglial cells through multiple molecular mechanisms.
        J Neurochem. 2003; 87: 742-751
        • Storer P.D.
        • Xu J.
        • Chavis J.
        • Drew P.D.
        Peroxisome proliferator-activated receptor-gamma agonists inhibit the activation of microglia and astrocytes: implications for multiple sclerosis.
        J Neuroimmunol. 2005; 161: 113-122
        • Landreth G.E.
        • Heneka M.T.
        Anti-inflammatory actions of peroxisome proliferator-activated receptor gamma agonists in Alzheimer's disease.
        Neurobiol Aging. 2001; 22: 937-944
        • Combs C.K.
        • Johnson D.E.
        • Karlo J.C.
        • Cannady S.B.
        • Landreth G.E.
        Inflammatory mechanisms in Alzheimer's disease: inhibition of beta-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARgamma agonists.
        J Neurosci. 2000; 20: 558-567
        • Sastre M.
        • Dewachter I.
        • Landreth G.E.
        • Willson T.M.
        • Klockgether T.
        • van Leuven F.
        • et al.
        Nonsteroidal anti-inflammatory drugs and peroxisome proliferator-activated receptor-gamma agonists modulate immunostimulated processing of amyloid precursor protein through regulation of beta-secretase.
        J Neurosci. 2003; 23: 9796-9804
        • Sagi S.A.
        • Weggen S.
        • Eriksen J.
        • Golde T.E.
        • Koo E.H.
        The non-cyclooxygenase targets of non-steroidal anti-inflammatory drugs, lipoxygenases, peroxisome proliferator-activated receptor, inhibitor of kappa B kinase, and NF kappa B, do not reduce amyloid beta 42 production.
        J Biol Chem. 2003; 278: 31825-31830
        • Diab A.
        • Deng C.
        • Smith J.D.
        • Hussain R.Z.
        • Phanavanh B.
        • Lovett-Racke A.E.
        • et al.
        Peroxisome proliferator-activated receptor-gamma agonist 15-deoxy-Delta(12,14)-prostaglandin J(2) ameliorates experimental autoimmune encephalomyelitis.
        J Immunol. 2002; 168: 2508-2515
        • Pershadsingh H.A.
        • Heneka M.T.
        • Saini R.
        • Amin N.M.
        • Broeske D.J.
        • Feinstein D.L.
        Effect of pioglitazone treatment in a patient with secondary multiple sclerosis.
        J Neuroinflamm. 2004; 1: 3