Advertisement
Review article| Volume 217, ISSUE 2, P125-130, February 15, 2004

Download started.

Ok

Angiogenesis in multiple sclerosis: is it good, bad or an epiphenomenon?

  • Shauna Kirk
    Affiliations
    Department of Pathology, University of Western Ontario, London, Ontario, Canada
    Search for articles by this author
  • Joseph A. Frank
    Affiliations
    Experimental Neuroimaging Section, Laboratory of Diagnostic Radiology Research, Clinical Center, National Institutes of Health, Bethesda, MD, USA
    Search for articles by this author
  • Stephen Karlik
    Correspondence
    Corresponding author. Diagnostic Imaging Room, 2MR21, London Health Sciences Center-University Campus, 339 Windermere Road, London, Ontario, Canada N6A 5A5. Tel.: +1-519-663-3648; fax: +1-519-663-3544.
    Affiliations
    Department of Pathology, University of Western Ontario, London, Ontario, Canada

    Department of Diagnostic Radiology, University of Western Ontario, London, Ontario, Canada

    Department of Physiology, University of Western Ontario, London, Ontario, Canada
    Search for articles by this author

      Abstract

      Characteristic pathological features of multiple sclerosis (MS) include inflammation, demyelination and axonal and oligodendrocyte loss. In addition, lesions can also have a significant vascular component. In this review, morphological, biochemical and radiological evidence is presented suggesting angiogenesis as a potential focus for investigation in MS. We hypothesize that angiogenesis plays a significant role in the MS lesion, perpetuating disease progression. Thus, treatment strategies that inhibit angiogenesis may decrease clinical and pathological signs of disease. Several approaches for testing this hypothesis are outlined.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Steinman L.
        Assessment of animal models for MS and demyelinating disease in the design of rational therapy.
        Neuron. 1999; 24: 511-514
        • Ludwin S.K.
        The neuropathology of multiple sclerosis.
        Neuroimaging Clin. N. Am. 2000; 10: 625-648
        • Folkman J.
        • Brem H.
        Angiogenesis and inflammation.
        in: Gallin J.I. Goldstein I.M. Snyderman R. Inflammation: Basic Principles and Clinical Correlates. 2nd ed. Raven Press, New York1992: 821-839
        • Forget M.A.
        • Desrosiers R.R.
        • Beliveau R.
        Physiological roles of matrix metalloproteinases: implications for tumor growth and metastasis.
        Can. J. Physiol. Pharmacol. 1999; 77: 465-480
        • Polverini P.J.
        The pathophysiology of angiogenesis.
        Crit. Rev. Oral. Biol. Med. 1995; 6: 230-247
        • Winkler J.D.
        • Jackson J.R.
        Chronic inflammation and angiogenesis.
        in: Rubanyi G.M. Angiogenesis in Health and Disease: Basic Mechanisms and Clinical Applications. Marcel Dekker, New York2000: 407-416
        • Kontos C.D.
        • Annex B.H.
        Angiogenesis.
        Curr. Atheroscler. Rep. 1999; 1: 165-171
        • Lingen M.W.
        Role of leukocytes and endothelial cells in the development of angiogenesis in inflammation and wound healing.
        Arch. Pathol. Lab. Med. 2001; 125: 67-71
        • Plate K.H.
        Mechanisms of angiogenesis in the brain.
        J. Neuropathol. Exp. Neurol. 1999; 58: 313-320
        • Dunn I.F.
        • Heese O.
        • Black P.M.
        Growth factors in glioma angiogenesis: FGFs, PDGF, EGF and TGFs.
        J. Neurooncol. 2000; 50: 121-137
        • Lopes M.B.
        Angiogenesis in brain tumors.
        Microsc. Res. Tech. 2003; 1;60: 225-230
        • Folkman J.
        • Shing Y.
        Angiogenesis.
        J. Biol. Chem. 1992; 267: 10931-10934
        • Creamer D.
        • Sullivan D.
        • Bicknell R.
        • Barker J.
        Angiogenesis in psoriasis.
        Angiogenesis. 2002; 5: 231-236
      1. Rindfleisch E. Pathological Histology: An Introduction to the study of Pathological Anatomy. Translated from the German by WC Kloman and FT Miles. London: Trűbner & Co.; 1872. p. 652–8.

        • Adams C.
        A Colour Atlas of Multiple Sclerosis and Other Myelin Disorders. Wolfe Medical Publications, United Kingdom1989: 184-201
        • Noseworthy J.H.
        • Lucchinetti C.
        • Rodriguez M.
        • Weinshenker B.G.
        Multiple sclerosis.
        N. Engl. J. Med. 2000; 343: 938-952
        • Tan I.L.
        • van Schijndel R.A.
        • Pouwels P.J.
        • van Walderveen M.A.
        • Reichenbach J.R.
        • Manoliu R.A.
        • et al.
        MR venography of multiple sclerosis.
        AJNR Am. J. Neuroradiol. 2000; 21: 1039-1042
        • Lucchinetti C.
        • Bruck W.
        • Parisi J.
        • Scheithauer B.
        • Rodriguez M.
        • Lassmann H.
        Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination.
        Ann. Neurol. 2000; 47: 707-717
        • Lassmann H.
        Hypoxia-like tissue injury as a component of multiple sclerosis lesions.
        J. Neurol. Sci. 2003; 206: 187-191
        • Semenza G.L.
        Surviving ischemia: adaptive responses mediated by hypoxia-inducible factor 1.
        J. Clin. Invest. 2000; 106: 809-812
        • Aboul-Enein F.
        • Rauschka H.
        • Kornek B.
        • Stedelmann C.
        • Stefferi A.
        • Brucket W.
        • et al.
        Preferential loss of Myelin-Associated Glycoprotein reflects hypoxia-like white matter damage in stroke and inflammatory brain diseases.
        J. Neuropathol. Exp. Neurol. 2003; 62: 25-33
        • Carmeliet P.
        • Jain R.K.
        Angiogenesis in cancer and other diseases.
        Nature. 2000; 407: 249-257
        • Griffioen A.W.
        • Molema G.
        Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic I inflammation.
        Pharmacol. Rev. 2000; 52: 237-268
        • Benveniste E.N.
        Role of macrophages/microglia in multiple sclerosis and experimental allergic encephalomyelitis.
        J. Mol. Med. 1997; 75: 165-173
        • Dines K.C.
        • Powell H.C.
        Mast cell interactions with the nervous system: relationship to mechanisms of disease.
        J. Neuropathol. Exp. Neurol. 1997; 56: 627-640
        • Van Meir E.G.
        Cytokines and tumors of the central nervous system.
        Glia. 1995; 15: 264-288
        • Giovannoni G.
        • Miller D.H.
        • Losseff N.A.
        • Sailer M.
        • Lewellyn-Smith N.
        • Thompson A.J.
        • et al.
        Serum inflammatory markers and clinical/MRI markers of disease progression in multiple sclerosis.
        J. Neurol. 2001; 248: 487-495
        • Ziche M.
        • Morbidelli L.
        Nitric oxide and angiogenesis.
        J. Neurooncol. 2000; 50: 139-148
        • Salani D.
        • Taraboletti G.
        • Rosano L.
        • Di Castro V.
        • Borsotti P.
        • Giavazzi R.
        • et al.
        Endothelin-1 induces an angiogenic phenotype in cultured endothelial cells and stimulates neovascularization in vivo.
        Am. J. Pathol. 2000; 157: 1703-1711
        • Haufschild T.
        • Shaw S.G.
        • Kesselring J.
        • Flammer J.
        Increased endothelin-1 plasma levels in patients with multiple sclerosis.
        J. Neuroophthalmol. 2001; 21: 37-38
        • Jackson J.R.
        • Seed M.P.
        • Kircher C.H.
        • Willoughby D.A.
        • Winkler J.D.
        The codependence of angiogenesis and chronic inflammation.
        FASEB J. 1997; 11: 457-465
        • Proescholdt M.A.
        • Jacobson S.
        • Tresser N.
        • Oldfield E.H.
        • Merrill M.J.
        Vascular endothelial growth factor is expressed in multiple sclerosis plaques and can induce inflammatory lesions in experimental allergic encephalomyelitis rats.
        J. Neuropathol. Exp. Neurol. 2002; 61: 914-925
        • Kolch W.
        • Martiny-Baron A.
        • Kieser A.
        • Marme D.
        Regulation of the expression of the VEGF/VPS and its receptors: role in tumor angiogenesis.
        Breast Cancer Res. Treat. 1995; 36: 139-155
        • Radisavljevic Z.
        • Avraham H.
        • Avraham S.
        Vascular endothelial growth factor up-regulates ICAM-1 expression via phosphatidylinositol 3 OH-kinase/AKT/nitric oxide pathway and modu migration of brain microvascular endothelial cells.
        J. Biol. Chem. 2000; 275: 20770-20774
        • Dvorak H.F.
        VPF/VEGF and the angiogenic response.
        Semin. Perinatol. 2000; 24: 75-78
        • Hiehle Jr., J.F.
        • Grossman R.I.
        • Ramer K.N.
        • Gonzalez-Scarano F.
        • Cohen J.A.
        Magnetization transfer effects in MR-detected multiple sclerosis lesions: comparison with gadolinium-enhanced spin-echo images and nonenhanced T1-weighted images.
        AJNR Am. J. Neuroradiol. 1995; 16: 69-77
        • He J.
        • Grossman R.I.
        • Ge Y.
        • Mannon L.J.
        Enhancing patterns in multiple sclerosis: evolution and persistence.
        Am. J. Neuroradiol. 2001; 22: 649-664
        • Plumb J.
        • McQuaid S.
        • Mirakhur M.
        • Kirk J.
        Abnormal endothelial tight junctions in active lesions and normal-appearing white matter in multiple sclerosis.
        Brain Pathol. 2002; 12: 154-169
        • Rashid W.
        • Parkes L.M.
        • Ingle G.T.
        • Chard D.T.
        • Symms M.
        • Tofts P.S.
        • et al.
        Comparative investigation of cerebral perfusion in multiple sclerosis using a novel technique.
        ECTRIMS, Baltimore, USA2002
        • Wuerfel J.
        • Bellman-Strobl J.
        • Brunecker P.
        • Aktas O.
        • McFarland H.
        • Villringer A.
        • et al.
        Changes in cerebral perfusion precede plaque formation in multiple sclerosis.
        Mult. Scler. 2003; 9: S19-S20
        • Ludwin S.K.
        • Henry J.M.
        • McFarland H.F.
        Vascular proliferation and angiogenesis in MS: clinical and pathogenic implications.
        J. Neuropathol. Exp. Neurol. 2001; 60: 505
        • Paleolog E.M.
        Angiogenesis in rheumatoid arthritis.
        Arthritis Res. 2002; 4: S81-S90
        • Wamil A.W.
        • Wamil B.D.
        • Hellerqvist C.G.
        CM101-mediated recovery of walking ability in adult mice paralyzed by spinal cord injury.
        Proc. Natl. Acad. Sci. U. S. A. 1998; 95: 13188-13193
        • Nanney L.B.
        • Wamil B.D.
        • Whitsitt J.
        • Cardwell N.L.
        • Davidson J.M.
        • Yan H.P.
        • et al.
        CM101 stimulates cutaneous wound healing through an anti-angiogenic mechanism.
        Angiogenesis. 2001; 4: 61-70
        • Jang Y.C.
        • Arumugam S.
        • Gibran N.S.
        • Isik F.F.
        Role of alpha(v) integrins and angiogenesis during wound repair.
        Wound Repair Regen. 1999; 7: 375-380
        • Storgard C.M.
        • Stupack D.G.
        • Joncyzk A.
        • Goodman S.L.
        • Fox R.I.
        • Cheresh D.A.
        Decreased angiogenesis and arthritic disease in rabbits treated with an alphavbeta3 antagonist.
        J. Clin. Invest. 1999; 103: 47-54
        • Peacock D.J.
        • Banquerigo M.L.
        • Brahn E.
        Angiogenesis inhibition suppresses collagen arthritis.
        J. Exp. Med. 1992; 175: 1135-1138
        • Tilley B.C.
        • Alarcon G.S.
        • Heyse S.P.
        • Trentham D.E.
        • Neuner R.
        • Kaplan D.A.
        • et al.
        Minocycline in rheumatoid arthritis. A 48-week, double-blind, placebo-controlled trial. MIRA Trial Group.
        Ann. Intern. Med. 1995; 122: 81-89
        • Arsenault A.L.
        • Lhotak S.
        • Hunter W.L.
        • Banquerigo M.L.
        • Brahn E.
        Taxol involution of collagen-induced arthritis: ultrastructural correlation with the inhibition of synovitis and neovascularization.
        Clin. Immunol. Immunopathol. 1998; 86: 280-289
        • Sone H.
        • Kawakami Y.
        • Sakauchi M.
        • Nakamura Y.
        • Takahashi A.
        • Shimano H.
        • et al.
        Neutralization of vascular endothelial growth factor prevents collagen-induced arthritis and ameliorates established disease in mice.
        Biochem. Biophys. Res. Commun. 2001; 281: 562-568
        • Riecke B.
        • Chavakis E.
        • Bretzel R.G.
        • Linn T.
        • Preissner K.T.
        • Brownlee M.
        • et al.
        Topical application of integrin antagonists inhibits proliferative retinopathy.
        Horm. Metab. Res. 2001; 33: 307-311
        • Auricchio A.
        • Behling K.C.
        • Maguire A.M.
        • O'Connor E.M.
        • Bennett J.
        • Wilson J.M.
        • et al.
        Inhibition of retinal neovascularization by intraocular viral-mediated delivery of anti-angiogenic agents.
        Mol. Ther. 2002; 6: 490-494
        • Griggs J.
        • Skepper J.N.
        • Smith G.A.
        • Brindle K.M.
        • Metcalfe J.C.
        • Hesketh R.
        Inhibition of proliferative retinopathy by the anti-vascular agent combretastatin-A4.
        Am. J. Pathol. 2002; 160: 1097-1103
        • Penn J.S.
        • Rajaratnam V.S.
        • Collier R.J.
        • Clark A.F.
        The effect of an angiostatic steroid on neovascularization in a rat model of retinopathy of prematurity.
        Invest. Ophthalmol. Vis. Sci. 2001; 42: 283-290
        • Sauder D.N.
        • Dekoven J.
        • Champagne P.
        • Croteau D.
        • Dupont E.
        Neovastat (AE-941), an inhibitor of angiogenesis: randomized phase I/II clinical trial results in patients with plaque psoriasis.
        J. Am. Acad. Dermatol. 2002; 47: 535-541
        • Rohowsky-Kochan C.
        • Molinaro D.
        • Cook S.D.
        Cytokine secretion profile of myelin basic protein-specific T cells in multiple sclerosis.
        Mult. Scler. 2000; 6: 69-77
        • Lindner D.J.
        • Borden E.C.
        Synergistic antitumor effects of a combination of interferon and tamoxifen on estrogen receptor-positive and receptor-negative human tumor cell lines in vivo and in vitro.
        J. Interferon Cytokine Res. 1997; 17: 681-693
        • Fidler I.J.
        Angiogenesis and cancer metastasis.
        Cancer J. 2000; 6: S134-S141
        • Izikson L.
        • Klein R.S.
        • Luster A.D.
        • Weiner H.L.
        Targeting monocyte recruitment in CNS autoimmune disease.
        Clin. Immunol. 2002; 103: 125-131
        • MacLean H.J.
        • Freedman M.S.
        Immunologic therapy for relapsing–remitting multiple sclerosis.
        Curr. Neurol. Neurosci. Rep. 2001; 1: 277-285
        • Folkman J.
        • Langer R.
        • Linhardt R.J.
        • Haudenschild C.
        • Taylor S.
        Angiogenesis inhibition and tumor regression caused by heparin or a heparin fragment in the presence of cortisone.
        Science. 1983; 221: 719-725
        • Colville-Nash P.R.
        • Alam C.A.
        • Appleton I.
        • Brown J.R.
        • Seed M.P.
        • Willoughby D.A.
        The pharmacological modulation of angiogenesis in chronic granulomatous inflammation.
        J. Pharmacol. Exp. Ther. 1995; 274: 1463-1472
        • Nauck M.
        • Karakiulakis G.
        • Perruchoud A.P.
        • Papakonstantinou E.
        • Roth M.
        Corticosteroids inhibit the expression of the vascular endothelial growth factor gene in human vascular smooth muscle cells.
        Eur. J. Pharmacol. 1998; 341: 309-315
        • Hommes O.R.
        • Weiner H.L.
        Results of an international questionnaire on immunosuppressive treatment of multiple sclerosis.
        Mult. Scler. 2002; 8: 139-141
        • Polverini P.J.
        • Novak R.F.
        Inhibition of angiogenesis by the antineoplastic agents mitoxantrone and bisantrene.
        Biochem. Biophys. Res. Commun. 1986; 140: 901-907
        • Billington D.C.
        Angiogenesis and its inhibition: potential new therapies in oncology and non-neoplastic diseases.
        Drug Des. Discov. 1991; 8: 3-35
        • Lublin F.D.
        Experimental models of autoimmune demyelination.
        in: Cook S.D. Handbook of Multiple Sclerosis. 2nd ed. Marcel Dekker, New York1996: 119-143
        • Zhang Z.
        • Guth L.
        Experimental spinal cord injury: Wallerian degeneration in the dorsal column is followed by revascularization, glial proliferation, and nerve regeneration.
        Exp. Neurol. 1997; 147: 159-171
      2. The Angiogenesis Foundation: online database [http://www.cancer.gov/clinical_trials/doc.aspx?viewid=B0959CBB-3004-4160-A679-6DD204BEE68C].

        • Longo R.
        • Sarmiento R.
        • Fanelli M.
        • Capaccetti B.
        • Gattuso D.
        • Gasparini G.
        Anti-angiogenic therapy: rationale, challenges and clinical studies.
        Angiogenesis. 2002; 5: 237-256
        • Brundula V.
        • Rewcastle N.B.
        • Metz L.M.
        • Bernard C.C.
        • Yong V.W.
        Targeting leukocyte MMPs and transmigration Minocycline as a potential therapy for multiple sclerosis.
        Brain. 2002; 125: 1297-1308
        • Popovic N.
        • Schubart A.
        • Goetz B.D.
        • Zhang S.C.
        • Linington C.
        • Duncan I.D.
        Inhibition of autoimmune encephalomyelitis by a tetracycline.
        Ann. Neurol. 2002; 51: 215-223
        • Weingart J.D.
        • Sipos E.P.
        • Brem H.
        The role of minocycline in the treatment of intracranial 9L glioma.
        J. Neurosurg. 1995; 82: 635-640
        • Tamargo R.J.
        • Bok R.A.
        • Brem H.
        Angiogenesis inhibition by minocycline.
        Cancer Res. 1991; 51: 672-675
        • Gilbertson-Beadling S.
        • Powers E.A.
        • Stamp-Cole M.
        • Scott P.S.
        • Wallace T.L.
        • Copeland J.
        • et al.
        The tetracycline analogs minocycline and doxycycline inhibit angiogenesis in vitro by a non-metalloproteinase-dependent mechanism.
        Cancer Chemother. Pharmacol. 1995; 36: 418-424