Advertisement
Research Article| Volume 217, ISSUE 2, P135-141, February 15, 2004

Download started.

Ok

Minimally oxidized low-density lipoprotein regulates hemostasis factors of brain capillary endothelial cells

  • Jeong Ai Kim
    Correspondence
    Corresponding author. Tel.: +1-714-456-6808; fax: +1-714-456-6894.
    Affiliations
    Department of Neurology, University of California, Irvine, College of Medicine, 101 The City Drive South, Building. 55, Rm. 121, Orange, CA 92868-5120, USA
    Search for articles by this author
  • Nam D. Tran
    Affiliations
    Department of Neurology, University of California, Irvine, College of Medicine, 101 The City Drive South, Building. 55, Rm. 121, Orange, CA 92868-5120, USA
    Search for articles by this author
  • Judith A. Berliner
    Affiliations
    Department of Pathology and Medicine, University of California, Los Angeles, Los Angeles, CA, USA
    Search for articles by this author
  • Mark J. Fisher
    Affiliations
    Department of Neurology, University of California, Irvine, College of Medicine, 101 The City Drive South, Building. 55, Rm. 121, Orange, CA 92868-5120, USA

    Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
    Search for articles by this author

      Abstract

      Minimally oxidized low-density lipoprotein (MM-LDL) is a potent atherogenic lipoprotein. We analyzed the effects of MM-LDL on brain capillary endothelial expression of plasminogen activator inhibitor-1 (PAI-1), tissue-type plasminogen activator (tPA), and thrombomodulin (TM). Cultured bovine brain capillary endothelial cells (BEC) incubated with MM-LDL (25 μg/ml) for 24 h showed increased PAI-1 mRNA levels by approximately seven-fold, while tPA and TM mRNA levels were reduced by 84% and 75%, respectively. Moreover, PAI-1 protein levels increased two-fold (16.8±7.6 vs. 7.6±2.1 ng/ml, p<0.05), whereas tPA protein levels decreased by 45% (1.3±0.5 ng/ml vs. 2.3±0.7 ng/ml, p<0.05), and TM protein level decreased by 40%. Following incubation with MM-LDL, PAI-1 activity was increased 35% (18.4±5.0 vs. 24.8±5.2 AU/ml, p<0.05), while TM activity was decreased by 30%. MM-LDL therefore has substantial pro-thrombotic effects on brain capillary endothelial cells, reducing both endothelial fibrinolytic capacity (downregulating tPA while upregulating PAI-1) and anticoagulant function (downregulating TM). These results suggest that MM-LDL may contribute to thrombus formation in the brain.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mendez I.
        • Hachinski V.
        • Wolfe B.
        Serum lipids after stroke.
        Neurology. 1987; 37: 507-511
        • Delanty N.
        • Vaughan C.J.
        Vascular effects of statins in stroke.
        Stroke. 1997; 28: 2315-2320
        • Harrison D.G.
        Endothelial dysfunction in atherogenesis.
        Basic Res. Cardiol. 1994; 89: 87-102
        • Steinberg D.
        • Parthasarathy T.E.
        • Carew T.E.
        • Khoo J.C.
        • Witztum J.L.
        Beyond cholesterol: modification of low density lipoprotein that increases its atherogenecity.
        N. Engl. J. Med. 1989; 320: 915-924
        • Berliner J.A.
        • Navab M.
        • Fogelman A.M.
        • Frank J.S.
        • Demer L.L.
        • Edwards P.A.
        • et al.
        Atherosclerosis: basic mechanisms. Oxidation, inflammation, and genetics.
        Circulation. 1995; 91: 2488-2496
        • Berliner J.A.
        • Territo M.C.
        • Sevanian A.
        • Ramin S.
        • Kim J.A.
        • Bamshad B.
        • et al.
        Minimally modified low density lipoprotein stimulates monocyte endothelial interactions.
        J. Clin. Invest. 1990; 85: 1260-1266
        • Ross R.
        The pathogenesis of atherosclerosis: an update.
        N. Engl. J. Med. 1986; 314: 488-500
        • Drake T.A.
        • Hannani K.
        • Fei H.
        • Lavi S.
        • Berliner J.A.
        Minimally oxidized low-density lipoprotein induces tissue factor expression in cultured human endothelial cells.
        Am. J. Pathol. 1991; 138: 601-607
        • Fei H.
        • Berliner J.A.
        • Parhami F.
        • Drake T.A.
        Regulation of endothelial tissue factor expression by minimally oxidized LDL and lipopolysaccharide.
        Arterioscler. Thromb. 1993; 13: 1711-1717
        • Galle J.
        • Mulsch A.
        • Busse R.
        • Bassenge E.
        Effects of native and oxidized low density lipoproteins on formation and inactivation of endothelial-derived relaxing factor.
        Arterioscler. Thromb. 1991; 11: 198-203
        • Napoli C.
        • Paterno R.
        • Faraci F.
        • Taguchi H.
        • Postiglione A.
        • Heistad D.
        Mildly oxidized low-density lipoprotein impairs responses of carotid but not basilar artery in rabbits.
        Stroke. 1997; 28: 2266-2272
        • Esmon C.T.
        The regulation of natural anticoagulant pathway.
        Science. 1987; 235: 1348-1352
        • Dittman W.A.
        • Majerus P.W.
        Structure and function of thrombomodulin: a natural anticoagulant.
        Blood. 1990; 75: 329-336
        • Salem H.H.
        • Maruyama I.
        • Ishii H.
        • Majerus P.W.
        Isolation and characterization of thrombomodulin from human placenta.
        J. Biol. Chem. 1984; 259: 12246-12251
        • Weis J.R.
        • Pitas R.E.
        • Wilson B.D.
        • Rogers G.M.
        Oxidized LDL increases cultured human endothelial cell tissue factor activity and reduces protein C activation.
        GM FASEB J. 1991; 5: 2459-2465
        • Chautan Y.L.M.
        • Anfosso F.
        • Nalbone A.G.
        • Lafont H.
        • Juhan-Vague I.
        Stimulating effect of oxidized low density lipoproteins on plasminogen activator inhibitor-1 synthesis by endothelial cells.
        Arterioscler. Thromb. 1991; 11: 1821-1829
        • Carson M.P.
        • Haudenschild C.C.
        Microvascular endothelium and pericytes: high yield, low passage cultures.
        In Vitro Cell. Dev. Biol. 1986; 22: 344-354
        • Tran N.D.
        • Wong V.L.Y.
        • Bready J.
        • Schreiber S.S.
        • Fisher M.J.
        Regulation of brain capillary endothelial thrombomodulin mRNA expression.
        Stroke. 1996; 27: 2304-2311
        • Liao F.
        • Berliner J.A.
        • Mehrabian M.
        • Navab M.
        • Demer L.
        • Lusis A.J.
        • et al.
        MM-LDL is biologically active in vivo mice.
        J. Clin. Invest. 1991; 87: 2253-2257
        • Kosugi K.
        • Morel D.C.
        • Dicorleto P.E.
        • Chisolm G.M.
        Toxicity of oxidized LDL to cultured fibroblasts is selective for S phase of the cell cycle.
        J. Cell. Physiol. 1987; 130: 311-320
        • Bodier C.
        Phase separation of integral membrane proteins in triton X-114 solution.
        J. Biol. Chem. 1981; 256: 1604-1607
        • Laemmli U.K.
        Cleavage of structural proteins during the assembly of the head of bacteriophage T4.
        Nature. 1970; 227: 680-685
        • Tsiang M.
        • Lentz S.R.
        • Dittman W.A.
        • Wen D.
        • Scaarpati E.M.
        • Sadler J.E.
        Equilibrium binding of thrombin to recombinant human thrombomodulin: effect of hirudin, fibrinogen, factor Va, and peptide analogues.
        Biochemistry. 1990; 29: 10602-10612
        • Tran N.D.
        • Correale J.
        • Schreiber S.S.
        • Fisher M.
        Transforming growth factor-β mediates astrocyte-specific regulation of brain capillary endothelial anticoagulant factors.
        Stroke. 1999; 30: 1671-1677
        • Tran N.D.
        • Wang L.
        • Schreiber S.S.
        • Zlokovic B.
        • Fisher M.
        Measurement of thrombomodulin mRNA expression in brain capillaries by polymerase chain reaction.
        Thromb. Res. 1998; 91: 191-197
        • Jensen L.E.
        • Whitehead A.S.
        Competitive reverse transcription polymerase chain reaction for qualifying pre-mRNA and mRNA of major acute phase proteins.
        J. Immunol. Methods. 1998; 215: 45-58
        • Tran N.D.
        • Schreiber S.S.
        • Fisher M.
        Astrocyte regulation of endothelial tissue plasminogen activator in a blood–brain barrier model.
        J. Cereb. Blood Flow Metab. 1998; 18: 1316-1324
        • Van Berkel T.J.
        • de Rijke Y.B.
        • Kruijt J.K.
        Different fate in vivo of oxidatively modified low density lipoprotein and acetylated low density lipoproteins in rats. Recognition by various scavenger receptors on Kupffer and endothelial liver cells.
        J. Biol. Chem. 1991; 266: 2282-2289
        • Nordestgaard B.G.
        The vascular endothelial barrier-selective retention of lipoproteins.
        Curr. Opin. Lipidol. 1996; 7: 269-273
        • Juul K.
        • Nielsen L.B.
        • Munkholm K.
        • Stender S.
        • Nordestgaard B.G.
        Oxidation of plasma low density lipoprotein accelerates its accumulation and degradation in the arterial wall in vivo.
        Circulation. 1996; 94: 1698-1704
        • Lucarelli M.
        • Borrelli V.
        • Fiori A.
        • Cucina A.
        • Granata F.
        • Potenza R.L.
        • et al.
        The expression of native and oxidized LDL receptors in brain microvessels is specifically enhanced by astrocytes-derived soluble factor(s).
        FEBS Letters. 2002; 522: 19-23
        • Steinberg D.
        Low density lipoprotein oxidation and its pathological significance.
        J. Biol. Chem. 1997; 272: 20963-20966
        • Moore K.L.
        • Esmon C.T.
        • Esmon N.L.
        Tumor necrosis factor leads to the internalization and degradation of thrombomodulin from the surface of bovine aortic endothelial cells in culture.
        Blood. 1989; 73: 159-165
        • Nawroth P.P.
        • Stern D.M.
        Modulation of endothelial cell hemostatic properties by tumor necrosis factor.
        J. Exp. Med. 1986; 163: 740-745
        • Conway E.M.
        • Rosenberg R.D.
        Tumor necrosis factor suppresses transcription of the thrombomodulin gene in endothelial cells.
        Mol. Cell Biol. 1988; 8: 5588-5592
        • Lentz S.R.
        • Tsiang M.
        • Sadler J.E.
        Regulation of thrombomodulin by tumor necrosis factor-alpha: comparison of transcriptional and posttranscriptional mechanisms.
        Blood. 1991; 77: 542-550
        • Garcia-Malsonado M.
        • Kaufman C.E.
        • Comp P.C.
        Decrease in endothelial cell-dependent protein C activation induced by thrombomodulin by treatment with cyclosporine.
        Transplantation. 1991; 51: 701-705
        • Lentz S.R.
        • Sadler J.E.
        Inhibition of thrombomodulin surface expression and protein C activation by the thrombogenic agent homocysteine.
        J. Clin. Invest. 1991; 88: 1906-1914
        • Hayashi T.
        • Honda T.
        • Suzuki K.
        An atherogenic stimulus homocysteine inhibits cofactor activity of thrombomodulin and enhances thrombomodulin expression in human umbilical vein endothelial cells.
        Blood. 1992; 79: 2930-2936
        • Ogawa S.
        • Gerlach H.
        • Esposito C.
        • Pasagian-Macaulay A.
        • Brett J.
        • Stern D.
        Hypoxia modulates the barrier and coagulant function of cultured bovine endothelium. Increased monolayer permeability and induction of procoagulant properties.
        J. Clin. Invest. 1990; 85: 1090-1098
        • Ishii H.
        • Kizaki K.
        • Horie S.
        • Kazama M.
        Oxidized low density lipoprotein reduced thrombomodulin transcription in cultured human endothelial cells through degradation of the lipoprotein in lysosomes.
        J. Biol. Chem. 1996; 271: 8458-8465
        • Lentz S.R.
        • Fernandez J.A.
        • Griffin J.H.
        • Piegors D.J.
        • Erger R.A.
        • Malinow M.R.
        • et al.
        Impaired anticoagulant response to infusion of thrombin in atherosclerotic monkeys associated with acquired defects in the protein C system.
        Arterioscler. Thromb. Vasc. Biol. 1999; 19: 1744-1750
        • Kugiyama K.
        • Sakamoto T.
        • Misumi I.
        • Sugiyama S.
        • Ohgushi M.
        • Ogawa H.
        • et al.
        Transferable lipids in oxidized low density lipoprotein stimulate plasminogen activator inhibitor-1 and inhibit tissue-type plasminogen activator release from endothelial cells.
        Circ. Res. 1993; 73: 335-343
        • Nordt T.K.
        • Peter K.
        • Ruef J.
        • Kübler W.
        • Bode C.
        Plasminogen activator inhibitor type-1 (PAI-1) and its role in cardiovascular disease.
        Thromb. Haemost. 1999; 82: 14-18
        • Salomaa V.
        • Matei C.
        • Aleksic N.
        • Sansores-Garcia L.
        • Folsom A.R.
        • Juneja H.
        • et al.
        Soluble thrombomodulin as a predictor of incident coronary heart disease and symptomless carotid artery atherosclerosis in the atherosclerosis risk in communities (ARIC) study: a case-cohort study.
        Lancet. 1999; 353: 1729-1734
        • Lindgren A.
        • Lindoff C.
        • Norrving B.
        • Astedt B.
        • Johansson B.B.
        Tissue plasminogen activator and plasminogen activator-1 in stroke patients.
        Stroke. 1996; 27: 1066-1071
        • Thögersen A.M.
        • Jansson J.H.
        • Boman K.
        • Nilsson T.K.
        • Weinehall L.
        • Huhtasaari F.
        • et al.
        High plasminogen activator inhibitor and tissue plasminogen activator levels in plasma precede a first acute myocardial infarction in men and women: evidence for the fibrinolytic system as an independent primary risk factor.
        Circulation. 1998; 98: 2141-2147
        • Johansson L.
        • Jansson J.H.
        • Boman K.
        • Nilsson T.K.
        • Stegmayr B.
        • Hallmans G.
        Tissue plasminogen activator, plasminogen activator inhibitor-1, and tissue plasminogen activator/plasminogen activator inhibitor-1 complex as risk factors for the development of a first stroke.
        Stroke. 2000; 31: 26-32
        • Gottsauner-Wolf M.
        • Sochor H.
        • Hornykewycz S.
        • Beckmann R.
        • Lang I.
        • Probst P.
        • et al.
        Predictive value of PAI-1 plasma activity and the thallium perfusion imaging for restenosis after percutaneous transluminal angioplasty in clinically asymptomatic patients.
        Thromb. Haemost. 1999; 81: 522-526