Research article| Volume 119, ISSUE 1, P53-64, October 1993

Abnormal localization of laminin subunits in muscular dystrophies

      This paper is only available as a PDF. To read, Please Download here.


      To address potential involvement of muscle basal lamina and membranc cytoskeleton proteins in the etiology of non-dystrophinopathy muscular dystrophies, we examined the immunostaining intensity and distribution of laminin subunits (A, B1, B2 and M), type IV collagen, dystrophin and spectrin in skeletal muscle biopsies from 64 myopathic patients (17 Fukuyama congenital muscular dystrophy: FCMD, 13 congenital muscular dystrophy unrelated to FCMD: other CMD, 16 Duchenne muscular dystrophy: DMD, and 18 other neuromuscular diseases. In FCMD muscle, we found a significant reduction of laminin M (merosin; a striated muscle specific basal lamina-associated protein) with ∼ 26% of levels seen in controls by quantitative immunofluorescence. Other CMD and DMD muscles showed less dramatic reductions (78%, 80%, respectively). The localization of laminin M was also abnormal in FCMD muscle. Laminin B1 and B2 showed abnormalities similar to those observed with laminin M, but were less marked. Laminin A was only detected in rare regenerating fibers in control biopsies, whereas it was seen around most muscle fibers in FCMD patients, and in dystrophin deficient muscle fibers from DMD patients and its carrier. Staining intensity of type IV collagen in FCMD muscle was not significantly different from the other diseases. These findings may implicate a primary or central role for the basal lamina in FCMD muscle.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of the Neurological Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Alameddine H.S.
        • Hantai D.
        • Dehaupas M.
        • Fardeau M.
        Role of persisting basement membrane in the reorganization of myofibers originating from myogenic cell grafts in the rat.
        Neuromusc. Disord. 1991; 1: 143-152
        • Albert B.
        • Bray D.
        • Lewis J.
        • Raff M.
        • Roberts K.
        • Watson J.
        Cell adhesion, cell junctions, and the extracellular matrix.
        in: Albert B. Bray D. Lewis J. Molecular Biology of the Cell. 2nd edn. Garland Publ., Inc, New York/London1989: 791-836
        • Arahata K.
        • Hoffman E.P.
        • Kunkel L.M.
        • Ishiura S.
        • Tsukahara T.
        • Ishihara T.
        • Sunohara N.
        • Nonaka I.
        • Ozawa E.
        • Sugita H.
        Dystrophin diagnosis: Comparison of dystrophin abnormalities by immunofluorescence and immunoblot analyses.
        in: Proc. Natl. Acad. Sci. USA. 86. 1989: 7154-7158
        • Arahata K.
        • Beggs A.H.
        • Honda H.
        • Ito S.
        • Ishiura S.
        • Tsukahara T.
        • Ishiguro T.
        • Eguchi C.
        • Orimo S.
        • Arikawa E.
        • Kaido M.
        • Nonaka I.
        • Sugita H.
        • Kunkel L.M.
        Preservation of the C-terminus of dystrophin molecule in the skeletal muscle from Becker muscular dystrophy.
        J. Neurol. Sci. 1991; 101: 148-156
        • Arikawa E.
        • Ishihara T.
        • Nonaka I.
        • Sugita H.
        • Arahata K.
        Immunocytochemical analysis of dystrophin in congenital muscular dystrophy.
        J. Neurol. Sci. 1991; 105: 79-87
        • Banker B.Q.
        Congenital muscular dystrophy.
        in: Engel A.G. Banker B.Q. Myology. McGraw-Hill Book Co, New York1986: 1367-1382
        • Beggs A.H.
        • Neumann P.E.
        • Arahata K.
        • Arikawa E.
        • Nonaka I.
        • Anderson M.
        • Kunkel L.M.
        Possible influences on the expression of X chromosome-linked dystrophin abnormalities by heterozygosity for autosomal recessive Fukuyama congenital muscular dystrophy.
        in: Proc. Natl. Acad. Sci. USA. 89. 1992: 623-627
        • Bertolotto A.
        • Palmucci L.
        • Doriguzzi C.
        • Mongini T.
        • Gagnor E.
        • Rosso M.D.
        • Tarone G.
        Laminin and fibronectin distribution in normal and pathological human muscle.
        J. Neurol. Sci. 1983; 60: 377-382
        • Byers T.J.
        • Kunkel L.M.
        • Watkins S.C.
        The subcellular distribution of dystrophin in mouse skeletal, cardiac, and smooth muscle.
        J. Cell Biol. 1991; 115: 411-421
        • Calof A.L.
        • Lander A.D.
        Relationship between neuronal migration and cell-substratum adhesion: laminin and merosin promote olfactory neuronal migration but are anti-adhesive.
        J. Cell Biol. 1991; 115: 779-794
        • Duance V.C.
        • Stephens H.R.
        • Dunn M.
        • Bailey A.J.
        • Dubowitz V.
        A roll for collagen in the pathogenesis of muscular dystrophy?.
        Nature. 1980; 284: 470-472
        • Duance V.C.
        • Black C.M.
        • Dubowitz V.
        • Hughes G.R.
        • Bailey A.J.
        Polymyositis- an immunofluorescence study on the distribution of collagen types.
        Muscle Nerve. 1980; 3: 487-490
        • Dubowitz V.
        Congenital muscular dystrophy.
        in: Dubowitz V. Muscle Disorders in Childhood. Year Book Med. Publ, Chicago, IL1989: 52-65
        • Ehrig K.
        • Leivo I.
        • Argraves W.S.
        • Ruoslahti E.
        • Engvall E.
        Merosin, a tissue-specific basement membrane protein, is a laminin-like protein.
        in: Proc. Natl. Acad. Sci. USA. 87. 1990: 3264-3268
        • Engvall E.
        • Earwicker D.
        • Day A.
        • Muir D.
        • Manthorpe M.
        • Paulsson M.
        Merosin promotes cell attachment and neurite outgrowth and is a component of the neurite-promoting factor of RN22 Schwannoma cells.
        Exp. Cell Res. 1992; 198: 115-123
        • Ervasti J.M.
        • Ohlendieck K.
        • Kahl S.D.
        • Gaver M.G.
        • Campbell K.P.
        Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle.
        Nature. 1990; 345: 315-319
        • Ervasti J.M.
        • Campbell K.P.
        Membrane organization of the dystrophin-glycoprotein complex.
        Cell. 1991; 66: 1121-1131
        • Foidart M.
        • Foidart J.M.
        • Engel W.K.
        Collagen localization in normal and fibrotic human skeletal muscle.
        Arch. Neurol. 1981; 38: 152-157
        • Fukuyama Y.
        • Kawazura M.
        • Haruna H.
        A peculiar form of congenital progressive muscular dystrophy.
        Pediatr. Univ. Tokyo. 1960; 4: 5-8
        • Fukuyama Y.
        • Osawa M.
        • Suzuki H.
        Congenital progressive muscular dystrophy of the Fukuyama type: clinical, genetic and pathologic considerations.
        Brain. Dev. 1981; 13: 1-29
        • Hantai D.
        • Labat-Robert J.A.
        • Grimaud J.A.
        • Fardeau M.
        Fibronectin, laminin, type IV collagens in Duchenne muscular dystrophy, congenital muscular dystrophies and congenital myopathies: an immunocytochemical study.
        Connect. Tissue Res. 1985; 13: 273-281
        • Hynes R.O.
        • Lander A.D.
        Contact and adhesive specificities in the associations, migrations, and targeting of cells and axons.
        Cell. 1992; 68: 303-322
        • Ibraghimov-Beskrovnaya O.
        • Ervasti J.M.
        • Leveille C.J.
        • Slaughter C.A.
        • Sernett S.W.
        • Campbell K.P.
        Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix.
        Nature. 1992; 355: 696-702
        • Kamoshita S.
        • Konishi Y.
        • Segawa M.
        • Fukuyama Y.
        Congenital muscular dystrophy as a disease of the central nervous system.
        Arch. Neurol. 1976; 33: 513-516
        • Leivo I.
        • Engvall E.
        Merosin, a protein specific for basement membranes of Schwann cells, striated muscle, and trophoblast, is expressed late in nerve and muscle development.
        in: Proc. Natl. Acad. Sci. USA. 85. 1988: 1544-1548
        • Lidov H.G.
        • Byers T.J.
        • Watkins S.C.
        • Kunkel L.M.
        Localization of dystrophin to postsynaptic regions of central nervous system cortical neurons.
        Nature. 1990; 348: 725-728
        • Martin G.R.
        Laminin and other basement membrane components.
        Annu. Rev. Cell Biol. 1987; 3: 37-85
        • Matsumura K.
        • Tome F.M.S.
        • Collin H.
        • Azibi K.
        • Chaouch M.
        • Kaplan J-C.
        • Fardeau M.
        • Campbell K.P.
        Deficiency of the 50 kDa dystrophin-associated glycoprotein in sarcolemma of severe childhood autosomal recessive muscular dystrophy.
        Nature. 1992; 359: 320-322
        • Matsumura K.
        • Nonaka I.
        • Campbell K.P.
        Abnormal expression of dystrophin-associated proteins in Fukuyama-type congenital muscular dystrophy.
        Lancet. 1993; 341: 521-522
        • Nonaka I.
        • Miyoshino S.
        • Miike T.
        An electron microscopical study of the muscle in congenital muscular dystrophy.
        Kumamoto Med. 1972; 25: 68-82
        • Nonaka I.
        • Chou S.M.
        Congenital muscular dystrophy.
        in: Handbook of Clinical Neurology. Vol. 41. North-Holland Publ. Co, Amsterdam1979: 27-50
        • Porter G.A.
        • Dmytrenko G.M.
        • Winkelmann J.C.
        • Bloch R.J.
        Dystrophin colocalizes with beta-spectrin in distinct subsarcolemmal domains in mammalian skeletal muscle.
        J. Cell Biol. 1992; 117: 997-1005
        • Rampoldi E.
        • Meola G.
        • Conti A.M.F.
        • Velicogna M.
        • Larizza L.
        A comparative analysis of collagen III, IV, laminin and fibronectin in Duchenne muscular dystrophy biopsies and cell cultures.
        Eur. J. Cell Biol. 1986; 42: 27-34
        • Sanes J.R.
        The extracellular matrix.
        in: Engel A.G. Banker B.Q. Myology. McGraw-Hill Book Co, New York1986: 155-175
        • Sanes J.R.
        • Engvall E.
        • Butkowski R.
        • Hunter D.D.
        Molecular heterogeneity of basal laminae: isoforms of laminin and collagen IV at the neuromuscular junction and elsewhere.
        J. Cell Biol. 1990; 111: 1685-1699
        • Stephenes H.R.
        • Duance V.C.
        • Dunn M.J.
        • Bailey A.J.
        • Dubowitz V.
        Collagen types in neuromuscular diseases.
        J. Neurol. Sci. 1982; 53: 45-62
        • Stern L.N.
        • Manson J.I.
        Fukuyama congenital muscular dystrophy in 2 Australian siblings.
        Dev. Med. Child. Neurol. 1988; 32: 808-813
        • Takada K.
        • Nakamura H.
        • Suzumori K.
        • Sugiyama N.
        Cortical dysplasia in a 23-week fetus with Fukuyama congenital muscular dystrophy (FCMD).
        Acta Neuropathol. 1987; 74: 300-306
        • Takeshita K.
        • Yoshino K.
        • Kitahara T.
        Survey of Duchenne type and congenital type of muscular dystrophy in Shimane, Japan.
        Jpn. J. Hum. Genet. 1977; 22: 43-47
        • Wewer U.M.
        • Engvall E.
        • Paulsson M.
        • Yamada Y.
        • Albrechtsen R.
        Laminin A, B1, B2, S and M subunits in the postnatal rat liver development and after partial hepatectomy.
        Lab. Invest. 1992; 66: 378-389
        • Yoshida M.
        • Ozawa E.
        Glycoprotein complex anchoring dystrophin to sarcolemma.
        J. Biochem. 1990; 108: 748-752